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Abstract We introduce a class of orthonormal matrices U™ of order p™ x p", p =
2,...,n = 1,.... The construction of those matrices is achieved in different
scales by an iteration process, determined by a repetitive block matrix opera-
tion, involving the cross product of properly selected sub-matrices. For the case
p = 2 we get the well known Walsh system. This particular construction also
induces a multiscale transform on L (T), reminiscent (although different) of a
multiresolution analysis of Lo ('T).

1. Introduction

In order to provide efficient multiscale analysis on finite data, we seek for
linear transforms whose corresponding matrices have the ability to detect spe-
cific characteristics from those data. In [4], we introduced a class of weighted
sparse matrices for the purpose of prediction of almost periodic time series,
while in [5] we built sparse matrices capable of revealing local information at
different scales. In [3], we introduced a new class of sparse invertible matrices
H (m) of order m x m, suitable for grammar detection of symbolic sequences.
In fact, the matrices H (m) may be considered as a generalization of the usual
Haar matrices, since their construction was based on dilation and translation
operations on unbalanced Haar functions. Thus, we obtained a generalized
Haar transform:

{tn:n=1,....m} > {<t,h,>n=1,...,m},

where <, > is the usual inner product of the Euclidean space R™ and where
hy, are the rows of H(m).
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In this work we dealt with the problem: what happens if we use dilation and
replication operations, instead of using dilation and translation operations on
matrices?

In Section 2, we build a discrete transform on finite data by using an iteration
in scales. The cross product of matrices plays a central role in our construct,
because it can be used either as a dilation or replication operator. So, we start
from an initial matrix U of order p x p. In every step of the iteration process we
create a new matrix U of order p™ x p™. U™ is a block matrix, whose block
sub-matrices are defined from the cross product U (n=1) @ U; (see below). In
Theorem 11.1, we prove that the matrices U (") are orthonormal, whenever the
initial matrix U is orthonormal. Thus, we obtain a discrete transform:

{ti:izl,...,pn}<—>{<t,Ul-(n) >:i=1,...,p"},

where U, i(n) are the rows of U(™). For a suitable selection of the matrix U we
see that the resulting orthonormal system is the Walsh system.

Since to any row of the matrix U (") there corresponds a step function on T,
an orthonormal set M, = {my(7) : k = 1,...,p"} of functions of Ly(T)

emerges naturally from the matrix U™ . In Section 3 we see that the set M,,
is produced by successive dilations and replicas of a generator set of functions

M ={m;(v):i=0,...,p—1}:

P
mi(7) :ZUH»LJ']-[ﬂ 1)7 1=0,...,p— 1.
j_l p’p

Indeed

N n—1 ' n—1 )

M, = () = [[ me,@): k=1+> ep, g;€{0,...,p—1}
3=0 j=0

Finally, we see that our multiscale construction naturally extends to an invert-
ible transform on Lo(T).

2. A class of Walsh-type discrete transforms

Notation: Let M, ., be the set of all matrices of order n x m over the field
of complex numbers. If n = m, then M, ,, is abbreviated to M,,. We shall
use the symbolism A = [A;;] to denote a matrix A with elements A;;. The
notation

Ai:{AiJ 2j:1,...,m}

shall be used to denote the i-row of a matrix A. We define the following
operators:
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DEFINITION 11.1 Forp = 2,..., the tensor product of two matrices A €
M, .;m and B € My, ; is a block matrix A®@ B € My, -

anB . alnB
A® B = : :

amB ... amnB

DEFINITION 11.2 Let S : My, m X ... X My, m — Mp 4. 4n,,m be the
following block matrix operator:

M,
S(Ml,...,Mk):
My,

DEFINITION 11.3 Let U be an orthonormal matrix of order p X p, we define

a sequence of block matrices U () wheren =1, ...,N, by using the following
iteration:

U I
(n) _ )
U {S(U(n—l)®U1,...,U(n—1)®Up)7 n—o.... N (LD

where Uj is the i row of U.
THEOREM 11.1 The matrix U™, (n=1,...,N) is orthonormal.

Proof. We work inductively. Clearly, the theorem is true for n = 1. We
suppose that the matrix U("~1 is orthonormal, so it suffices to prove that <

U j(n), U, ") >= 0;;, where <, > is the usual inner product of the Euclidean
space R?". Let j = mp" ' +(, | = @p" ' + o, where m,q = 0,...,p —
1, (,o=1,...,p" !, then:

p" p—1pn?
(n) rr(n)y  _ (n)rr(n) _ (n) (n)
<Uj ’Ul > - Z Ujr Url - Z Z Uj,yp"*1+/J,Ul/p"*1+u,l
r=1 v=0 p=1
p—1p"~!
n—1 n—

= Z Z Um+1,u+1Ué7N )Uu+1,q+1Ul(L,g b

v=0 p=1
P ! )
= (Z Um+1,uUu,q+1> Z UC(Z; )U/.(l:lo'_l)
v=1 pn=1

- 6m7q5<70 = 5.77l
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It is clear that the inverse matrix of U™ coincides to its transpose (U (”))T.
The following multiresolution structure arises from the matrices U("):

Let Vj,» be the space of all real-valued sequences of length p™ and let Ui(n)
be the i-row of the matrix U(™), then any element ¢ € Vj,» can be written as:

Letj=1,...,n—1, k=1,...,p— 1, we define

ij_span{ k;pj+5‘ :1""apj}a
then, we have the decomposition:
Vor = Vo @11 @41 Wi,
where 1y = span{Us cs=1,...,p}.
EXAMPLE 11.1 Letp =3, n =3, then Vs = V) EBJQ»:I @%:1Wj,k, where:
Vo = span{Ul(g), - UZ,ES)},
Wi = span{Uig), ol Uég)}, Wig = span{U7(3), cel Ué3)}
Wy = span{Ul(g), ce Ul(g)}, W0 = span{Ul(g), . (3)}

DEFINITION 11.4 Let p > 2, we define the following matrix U®) of order
p X p:

whenever 1 = 1

p _ NEER sk whenever 1 < j <p—i+1 =1

7 - g:ziéa whenever j = p — i + 2,
0, wheneverp —i+2 < j<p
1 1 1
11 1 1
EXAMPLE 11.2 \112—1< )\1,3 Y Y.
Va1l -1 f i E
V2 V2

PROPOSITION 11.1 (see [2])
The matrix W\P) satisfies the following properties:

DY v =0, i=2...p
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(i) PP = B\ wheneveri < j,ij=1,...,p.
(iii) The matrix V®) is orthonormal.

OBSERVATION 11.1 If we consider the iteration (11.1) with initial matrix
U = U, then we obtain the Walsh system (see [6]). Indeed:

1 1 1
1 -1 -1
101 -1 |
-1 -1 1

1 /1 1 1
g — g - L U@ -t
v ( S| > 2

—_ = =

Whenever p > 2, we get a Walsh-type construction.

OBSERVATION 11.2 If we consider the iteration (11.1) with initial matrix
U=y — (eQWikl/P)i_lio, then we obtain the Generalized Walsh system
as defined in [6].

3. A multiscale transform on L,(T)

We denote by R the additive group of real numbers and by Z the subgroup
consisting of the integers. The group T is defined as the quotient R/Z. Since
there is an obvious identification between functions on T and 1-periodic func-
tions on R, from now on we identify the elements of the space Lo(T) of all
complex valued Lebesgue square integrable functions on T, as 1-periodic func-
tions on R.

Since any row U,En), k = 1,...,p" of the matrix U™ defined in Theo-
rem 11.1 can be assigned to a step function my () on T such that

~ J—1 7 ,
mk(’Y):mkja'YEQj,n:[ p ’pn>’ :1=---,pn,
an orthonormal set of functions of Ls(T') emerges naturally from the construc-
tion presented in section 2:
[V S (n)
j=1

Moreover, if U is the initial orthonormal matrix of the iteration process
(11.1), by defining:

p
mz(’y) = ZU’i+17j19j,n(7)7 1= 0, oD — 1,
j=1
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we can see that the set ]\7” can be produced by successive dilations of the
functions m;(7y) in the following:

n—1 n—1
M, = Tfﬁk(V):Hmsj(p]rY)akzl_}'Zejp]a 5j€{03--'7p_1}
j=0 Jj=0
(11.2)
Moreover, we can prove:

THEOREM 11.2 Let {V,, : V,, C Vi1, n > 1} be a nested sequence of

p"-dimensional subspaces of Lo('T), whose orthonormal basis is the set M,
defined in (11.2), then:

Unzlvn = LQ(T).
Proof. See [1].
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