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Abstract We introduce a class of orthonormal matrices U (n) of order pn × pn, p =
2, . . . , n = 1, . . .. The construction of those matrices is achieved in different
scales by an iteration process, determined by a repetitive block matrix opera-
tion, involving the cross product of properly selected sub-matrices. For the case
p = 2 we get the well known Walsh system. This particular construction also
induces a multiscale transform on L2(T), reminiscent (although different) of a
multiresolution analysis of L2(T).

1. Introduction
In order to provide efficient multiscale analysis on finite data, we seek for

linear transforms whose corresponding matrices have the ability to detect spe-
cific characteristics from those data. In [4], we introduced a class of weighted
sparse matrices for the purpose of prediction of almost periodic time series,
while in [5] we built sparse matrices capable of revealing local information at
different scales. In [3], we introduced a new class of sparse invertible matrices
H(m) of order m×m, suitable for grammar detection of symbolic sequences.
In fact, the matrices H(m) may be considered as a generalization of the usual
Haar matrices, since their construction was based on dilation and translation
operations on unbalanced Haar functions. Thus, we obtained a generalized
Haar transform:

{tn : n = 1, . . . , m} ↔ {< t, hn >: n = 1, . . . , m},

where <,> is the usual inner product of the Euclidean space Rm and where
hn are the rows of H(m).
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In this work we dealt with the problem: what happens if we use dilation and
replication operations, instead of using dilation and translation operations on
matrices?

In Section 2, we build a discrete transform on finite data by using an iteration
in scales. The cross product of matrices plays a central role in our construct,
because it can be used either as a dilation or replication operator. So, we start
from an initial matrix U of order p×p. In every step of the iteration process we
create a new matrix U (n) of order pn×pn. U (n) is a block matrix, whose block
sub-matrices are defined from the cross product U (n−1) ⊗ Ui (see below). In
Theorem 11.1, we prove that the matrices U (n) are orthonormal, whenever the
initial matrix U is orthonormal. Thus, we obtain a discrete transform:

{ti : i = 1, . . . , pn} ↔ {< t, U
(n)
i >: i = 1, . . . , pn},

where U
(n)
i are the rows of U (n). For a suitable selection of the matrix U we

see that the resulting orthonormal system is the Walsh system.
Since to any row of the matrix U (n) there corresponds a step function on T,

an orthonormal set M̃n = {m̃k(γ) : k = 1, . . . , pn} of functions of L2(T)
emerges naturally from the matrix U (n). In Section 3 we see that the set M̃n

is produced by successive dilations and replicas of a generator set of functions
M = {mi(γ) : i = 0, . . . , p− 1}:

mi(γ) =
p∑

j=1

Ui+1,j1h j−1
p

, j
p

”, i = 0, . . . , p− 1.

Indeed:

M̃n =



m̃k(γ) =

n−1∏

j=0

mεj (p
jγ) : k = 1 +

n−1∑

j=0

εjp
j , εj ∈ {0, . . . , p− 1}



 .

Finally, we see that our multiscale construction naturally extends to an invert-
ible transform on L2(T).

2. A class of Walsh-type discrete transforms
Notation: Let Mn,m be the set of all matrices of order n × m over the field
of complex numbers. If n = m, then Mn,m is abbreviated to Mn . We shall
use the symbolism A = [Aij ] to denote a matrix A with elements Aij . The
notation

Ai = {Ai,j : j = 1, . . . , m}
shall be used to denote the i-row of a matrix A. We define the following
operators:
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Definition 11.1 For p = 2, . . . , the tensor product of two matrices A ∈
Mn,m and B ∈ Mk ,l is a block matrix A⊗B ∈ Mnk ,ml :

A⊗B =




a11B . . . a1nB
...

. . .
...

am1B . . . amnB


 .

Definition 11.2 Let S : Mn1,m × . . . × Mnk,m → Mn1+...+nk,m be the
following block matrix operator:

S(M1, . . . ,Mk) =




M1
...

Mk


 .

Definition 11.3 Let U be an orthonormal matrix of order p× p, we define
a sequence of block matrices U (n), where n = 1, ..., N , by using the following
iteration:

U (n) =
{

U, n = 1
S

(
U (n−1) ⊗ U1, . . . , U

(n−1) ⊗ Up

)
, n = 2, . . . , N

, (11.1)

where Ui is the i row of U .

Theorem 11.1 The matrix U (n), (n = 1, . . . , N) is orthonormal.

Proof. We work inductively. Clearly, the theorem is true for n = 1. We
suppose that the matrix U (n−1) is orthonormal, so it suffices to prove that <

U
(n)
j , U

(n)
l >= δj,l, where <,> is the usual inner product of the Euclidean

space Rpn
. Let j = mpn−1 + ζ, l = qpn−1 + σ, where m, q = 0, . . . , p −

1, ζ, σ = 1, . . . , pn−1, then:

〈U (n)
j , U

(n)
l 〉 =

pn∑

r=1

U
(n)
jr U

(n)
rl =

p−1∑

ν=0

pn−1∑

µ=1

U
(n)
j,νpn−1+µ

U
(n)
νpn−1+µ,l

=
p−1∑

ν=0

pn−1∑

µ=1

Um+1,ν+1U
(n−1)
ζ,µ Uν+1,q+1U

(n−1)
µ,σ

=

(
p∑

ν=1

Um+1,νUν,q+1

)


pn−1∑

µ=1

U
(n−1)
ζ,µ U (n−1)

µ,σ




= δm,qδζ,σ = δj,l.
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It is clear that the inverse matrix of U (n) coincides to its transpose
(
U (n)

)T
.

The following multiresolution structure arises from the matrices U (n):
Let Vpn be the space of all real-valued sequences of length pn and let U

(n)
i

be the i-row of the matrix U (n), then any element t ∈ Vpn can be written as:

tl =
pn∑

i=1

〈t, U (n)
i 〉U (n)

i,l .

Let j = 1, . . . , n− 1, k = 1, . . . , p− 1, we define

Wj,k = span{U (n)
kpj+s

: s = 1, . . . , pj},

then, we have the decomposition:

Vpn = V0 ⊕n−1
j=1 ⊕p−1

k=1Wj,k,

where V0 = span{U (n)
s : s = 1, . . . , p}.

Example 11.1 Let p = 3, n = 3, then V33 = V0 ⊕2
j=1 ⊕2

k=1Wj,k, where:

V0 = span{U (3)
1 , . . . , U

(3)
3 },

W1,1 = span{U (3)
4 , . . . , U

(3)
6 }, W1,2 = span{U (3)

7 , . . . , U
(3)
9 },

W2,1 = span{U (3)
10 , . . . , U

(3)
18 }, W2,2 = span{U (3)

19 , . . . , U
(3)
27 }.

Definition 11.4 Let p ≥ 2, we define the following matrix Ψ(p) of order
p× p:

ψp
ij =





1√
p , whenever i = 1

1√
p−i+1

1√
p−i+2

, whenever 1 ≤ j ≤ p− i + 1

−
√

p−i+1√
p−i+2

, whenever j = p− i + 2,

0, whenever p− i + 2 < j ≤ p

i, j = 1, . . . , p.

Example 11.2 Ψ2 = 1√
2

(
1 1
1 −1

)
, Ψ3 = 1√

3




1 1 1
1√
2

1√
2

−√2
√

3√
2

−
√

3√
2

0


.

Proposition 11.1 (see [2])
The matrix Ψ(p) satisfies the following properties:

(i)
∑p

j=1 ψ
(p)
ij = 0, i = 2, . . . , p.
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(ii) ψ
(p)
i ψ

(p)
j = ψ

(p)
i,1 ψ

(p)
j , whenever i < j, i, j = 1, . . . , p.

(iii) The matrix Ψ(p) is orthonormal.

Observation 11.1 If we consider the iteration (11.1) with initial matrix
U = Ψ(2), then we obtain the Walsh system (see [6]). Indeed:

U (1) = Ψ(2) =
1√
2

(
1 1
1 −1

)
, U (2) =

1
2




1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


 , . . . .

Whenever p > 2, we get a Walsh-type construction.

Observation 11.2 If we consider the iteration (11.1) with initial matrix
U = Ψ(p) =

(
e2πikl/p

)p−1

k,l=0
, then we obtain the Generalized Walsh system

as defined in [6].

3. A multiscale transform on L2(T)

We denote by R the additive group of real numbers and by Z the subgroup
consisting of the integers. The group T is defined as the quotient R/Z. Since
there is an obvious identification between functions on T and 1-periodic func-
tions on R, from now on we identify the elements of the space L2(T) of all
complex valued Lebesgue square integrable functions on T, as 1-periodic func-
tions on R.

Since any row U
(n)
k , k = 1, . . . , pn of the matrix U (n) defined in Theo-

rem 11.1 can be assigned to a step function m̃k(γ) on T such that

m̃k(γ) = mkj , γ ∈ Ωj,n =
[
j − 1
pn

,
j

pn

)
, j = 1, . . . , pn,

an orthonormal set of functions of L2(T) emerges naturally from the construc-
tion presented in section 2:

M̃n =



m̃k(γ) : m̃k(γ) =

pn∑

j=1

U
(n)
k,j 1Ωj,n(γ), k = 1, . . . , pn.





Moreover, if U is the initial orthonormal matrix of the iteration process
(11.1), by defining:

mi(γ) =
p∑

j=1

Ui+1,j1Ωj,n(γ), i = 0, . . . , p− 1,
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we can see that the set M̃n can be produced by successive dilations of the
functions mi(γ) in the following:

M̃n =



m̃k(γ) =

n−1∏

j=0

mεj (p
jγ), k = 1 +

n−1∑

j=0

εjp
j , εj ∈ {0, . . . , p− 1}



 .

(11.2)
Moreover, we can prove:

Theorem 11.2 Let {Vn : Vn ⊂ Vn+1, n ≥ 1} be a nested sequence of
pn-dimensional subspaces of L2(T), whose orthonormal basis is the set M̃n

defined in (11.2), then:
∪n≥1Vn = L2(T).

Proof. See [1].
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