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Abstract This paper discusses properties properties the discrete Walsh transform for dif-
ferent orderings of Walsh functions. Presented are some methods for construc-
tion of the related transform matrices.

1. Introduction
In technical applications [1] Discrete Walsh Transform (DWT) is used in

three enumerations: Paley, Walsh and Hadamard. In technical literature the
Discrete Walsh Transforms are called the Walsh Transform. Correctly, the
term "Walsh Transform" refers to another notion in mathematics literature.
The Walsh Transform has been introduced in [2] in 1950 by Fine and initially
named the "Walsh-Fourier Transform" [3].

In technical applications the Discrete Walsh Transform in Paley (or Walsh,
or Hadamard) enumeration is called the Paley Transform (the Walsh Trans-
form, or the Hadamard Transform) and is denoted by PAL (or WAL, or HAD
correspondingly).

By W = (wkj) (U = (ukj), or H = (hkj), correspondingly) we denote the
matrix of the DWT in Paley enumeration (Walsh enumeration, or Hadamard
enumeration, respectively).

In mathematical books, as for instance [4], matrices Wn are introduced in
the form

wkj = wjk = wk(j/2n), 0 ≤ j, k < 2n, (16.1)

where {wk(x)}∞k=0 – is the Walsh-Paley system.
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The matrices Un are introduced in the form (16.1), where {wk(x)}∞k=0 – is
the original Walsh system [5] (Walsh system in Walsh enumeration).

The Hadamard matrices Hn were introduced in another way [6]. Let

H = H1 =
(

1 1
1 −1

)
.

Then a matrix H2 is a Kronecker product of H with H , thus, it is defined by

H2 = H(H) =
(

H H
H −H

)
=




1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


 .

Then, a matrix Hn is a Kronecker power

Hn = H(n) := H(Hn−1) = Hn−1(H).

Matrices Wn, Un, Hn consists of the same rows and differ only in enumer-
ation rows.

For example,

W2 =




1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


 , U2 =




1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1


 .

Let

ĩ = (i1 i2 . . . in)T , ik ∈ {0, 1} (16.2)

be a simply dyadic code for a non-negative integer i which is less 2n, when

i =
n∑

k=1

ik · 2k−1. (16.3)

Consider (see [8]) an inverse τ of a simply dyadic code (16.2)

τ (̃i) = (in in−1 . . . i2 i1)T , τ(i) =
n−1∑

j=0

in−j · 2j ;

then elements of Hadamard matrix are defined as hkj = wτ(k)(j/2n).
Using the Gray code [1], we can do analogous transition from Wn to Un.
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2. Construction of Walsh Matrices
We construct matrices Wn, Un, Hn in another way, without using Walsh

functions. We introduce three forms of scalar product for i, j (0 ≤ i < 2n) in
the form (16.3):

(i, j) = (i, j)n :=
n∑

k=1

ikjk, < i, j >=< i, j >n:=
n∑

k=1

ikjn−k+1, (16.4)

u(i, j) = un(i, j) := i1jn +
n−1∑

k=1

ik+1(jn−k+1 + jn−k). (16.5)

One may consider any operations (16.4) over the field Z2. Then the rule
(16.4) is the definition of a quadratic form A for construction of the Discrete
Walsh Transform matrices.

In the case of DWT in Hadamard enumeration it is the unit matrix: A =
AH := E.

For DWT in Paley enumeration it is a matrix with unity at the secondary
diagonal only (all other elements are zero).

In the case of DWT in Walsh enumeration it is a matrix with unity at the
secondary diagonal and at the sub-secondary diagonal,

AW :=




0 0 0 . . . 0 0 1
0 0 0 . . . 0 1 0
0 0 0 . . . 1 0 0
...

...
...

. . .
...

...
...

0 1 0 . . . 0 0 0
1 0 0 . . . 0 0 0




, AU :=




0 0 0 . . . 0 0 1
0 0 0 . . . 0 1 1
0 0 0 . . . 1 1 0
...

...
...

. . .
...

...
...

0 1 1 . . . 0 0 0
1 1 0 . . . 0 0 0




.

Define elements of the Discrete Walsh Transform matrices by

wij = (−1)<i,j>, hij = (−1)(i,j), uij = (−1)u(i,j). (16.6)

Lemma 16.1 The rule (16.4) is a correct definition of the scalar product; it
is a symmetric bilinear form.

The proof is trivial.

Corollary 16.1 Matrices Wn, Un, Hn constructed by the rule (16.6) are
symmetric.
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Usually [3], [4], Walsh functions are introduced as products of the Rademacher
functions rn(x). By definition, r0(x) = (−1)j for x ∈

[
j
2 , j+1

2

)
= ∆j

1,
j ∈ {0, 1}, and r0(x + 1) = r0(x) for x ∈ [0,∞).

Let rn(x) = rn−1(2x) for x ∈ [0,∞).

Remark 16.1 If we consider a modified segment [0, 1]∗, then we have ∆0
1 =

[0+, 1
2

−], ∆1
1 = [12

+
, 1−] and so on.

Then, the Walsh-Paley functions (for i in the form (16.3)) is (see [3], [4])

wi(x) :=
n∏

k=1

rik
k−1(x).

By another equivalent definition, put

w0(x) ≡ 1, w2n(x) = rn(x) , w2n+k(x) = w2n(x) · wk(x) for k < 2n.

A Walsh-Walsh functions (i.e., a Walsh function in ordering introduced ini-
tially by J.L. Walsh) is (see [7], [8]) v0 = w0, v1 = w1,

v2n = rn−1 · rn for n ∈ N , v2n+k = v2n · vk for k < 2n. (16.7)

The number of changes of the sign on the interval [0, 1) for each function of
the Walsh-Walsh system coincides with the index of the function (see [9]).

Lemma 16.2 For a fixed n, for any i, j elements wij in the formula (16.1)
and in the formula (16.6) are equal.

Proof. For x ∈
[

j
2n , j+1

2n

)
, j =

∑n
k=1 jk · 2k−1 , we get

x =
∑n

k=1
jk

2n−k+1 + x1 with x1 ∈ [0, 2−n). Then, rn−k(x) = (−1)jk , or
rk−1(x) = (−1)jn−k+1 . By using (16.1), we get wi(x) =

∏n
k=1(−1)jn−k+1ik =

(−1)<i,j>.

Lemma 16.3 The number of sign changes in the i-th row is equal to the index
i for the case of the DWT matrix in Walsh enumeration U = (uij) in the form
(16.6).

Proof. Denote by l = i − in2n−1 =
∑n−1

k=1 ik2k−1 and m = [j/2] =∑n
k=2 jk2k−1 the part of sums (16.3) of simply the dyadic codes for numbers

i and j. We have

un(i, j) = i1jn + i2(jn + jn−1) + . . . + in−1(j3 + j2) + in(j2 + j1) =

= un−1(l, m) + in(j2 + j1).
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For the fixed index i of the row, let j runs from 0 to 2n − 1. Then m runs
from 0 to 2n−1 − 1.

The proof is by induction on n. For n = 1, there is nothing to prove.
We introduce a notation vij for elements of the matrix Un−1, for which the

inductive assumption is true. We obtain

uij = (−1)un(i,j) = (−1)un−1(l,m)+in(j2+j1) = vlm · (−1)in(j2+j1). (16.8)

If in = 0, then we consider a upper half matrix Un. For in = 0: this
formula (16.8) make clear the independence of uij of j1. First, by (16.8) we
have uij = vlm and second l = i. It follows that the numbers of the sign
changes in the i-th row of matrices Un−1 and Un coincide.

If in = 1, then we consider a lower half matrix Un. A row with an index
i = 2n−1 + l in matrix Un corresponds to a l-th row of matrix Un−1 for (16.8).
If l = 0, then the 2n−1-th row has the form 1 − 1 − 1 1 in period and there
are 2n−1 changes of the sign. This is clear because by the factor (−1)j2+j1 in
(16.8).

The formula (16.8) corresponds to definition (16.7): the (2n−1+ l)-th row is
an element-wise product of the 2n−1-th row and the l-th row. Places of change
of the sign for 2n−1-th row and l-th row are different. Therefore, the number
of changes of the sign in the row with the index i = 2n−1 + l is equal to the
index i.

Corollary 16.2 . The matrix U = (uij) in (16.6) is the DWT matrix in
Walsh enumeration in (16.1).

In [7], Schipp have denoted Z2-linear rearrangements of the Walsh system.
Each linear rearrangement is given by the system of generating functions.

For example, the Rademacher system {rn(x)}∞n=0 is a system of generating
functions for the Walsh-Paley system. The system {Rn(x)}∞n=0 (when R0 =
r0, Rn = rn−1 · rn as in (16.7)) is a system of generating functions for the
Walsh-Walsh system. By definition in [3], Z2-linear rearrangements of the
Walsh system {vn(x)}∞n=0 are

v0(x) = w0(x), v2n(x) = Rn(x), v2n+k(x) = v2n(x) ·vk(x) for k < 2n,

when Rn is any Walsh function such that Rn /∈ {v0, v1, . . . , v2n−1}.
This will be a definition of the rearrangements of Walsh system iff the map

{wn(x)}∞n=0 to {vn(x)}∞n=0 is a bijection.
The rearrangement {vn(x)} of the Walsh system is called regular if v0(x) ≡

1, v1(x) = w1(x), and the sets {vk(x)}2n+1−1
k=2n and {wk(x)}2n+1−1

k=2n coincide
for any natural n.

Walsh-Kaczmarz system (see [3], [4]) is a regular and non-linear rearrange-
ment of the Walsh system. In [7], Schipp called a such system as piecewise-
linear rearrangement.
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The rearrangement of 2n initial Walsh functions in Hadamard enumeration
is the linear rearrangement with the Rademacher functions rn−1, rn−2,. . . , r2,
r1, r0 as the system of generating functions. This rearrangement is not regular.

Before we introduced the matrices A such that each row correspond to a
generating function (for the rearrangement of 2n initial Walsh functions): the
indexes of the Rademacher functions are taken in the inverse order; each unity
in a row has the index of the Rademacher function included into the product;
this product is an ordinary generating function. Similar matrices (denoted by
B) were introduced in [7], [10]; but numbers of the Rademacher functions
were taken in the usual order. If we write columns of the matrix A in inverse
order, we obtain the matrix B.

Theorem 16.1 Any non-singular matrix A of a quadratic form of order n
over the field Z2 allows to construct a Discrete Walsh Transform matrix of
order 2n in a new ordering by means of an algorithm consisting of two steps
(see (16.2), (16.3)):

v(i, j) = (̃i, Aj̃) = ĩT Aj̃ (bilinear form),

vij = (−1)v(i,j) (elements of the new matrix DWT).

Conversely, any matrix DWT of order 2n with the 0-th row consisting of 1 has
a similar non-singular matrix A (matrix of a quadratic form).

A DWT matrix of order 2n with the 0-th row consisting of 1 is symmetric iff
a matrix A of a quadratic form is symmetric.

This theorem can be proven by direct calculations.
In [11], p. 26, the author introduced the definition of infinite non-singular

matrix with finite columns over a finite field.

Theorem 16.2 Any infinite non-singular matrix of a quadratic form A with
finite rows over the field Z2 allows to introduce a linear rearrangement of the
Walsh system. Each row of the matrix A is a code of the ordinary generating
function.

Conversely, any linear rearrangement of the Walsh system has the similar
infinite non-singular matrix A of a quadratic form.

The proof is omitted.
Denote by Mn,m the class of (n×m) matrices.

Lemma 16.4 The matrix Hn in form (16.6) and Hadamard matrix in a form
of the Kronecker power Hn = H(n) coincide for any n.

Proof. Let Hn = (h(n)
ij )2

n−1
i,j=0 ∈ M2n,2n . By using (16.6), we obtain

hij = (−1)(i,j)n = (−1)(m2k,r2k)n · (−1)(l,t)n = (−1)(m,r)n−k · (−1)(l,t)k ,
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for i = m2k + l, j = r2k + t, 0 ≤ l, t < 2k, 0 ≤ m, r < 2n−k. This formula
is

h
(n)
ij = h(n−k)

mr · h(k)
lt .

For fixed m, r if l and t runs from 0 to 2k − 1, we get a block h
(n−k)
mr ·Hk

of matrix Hn represented by block form. A place of this block in Hadamards
matrix corresponds to the definition of the matrix Hn−k(Hk).

Finally, we obtain Hn = Hn−k(Hk) for any 1 ≤ k < n.
We shall introduced a new form of the matrix product. This product has

block structure and a dimension of a block is analogous to the form and di-
mension of blocks in the Kronecker product.

Definition 16.1 For any matrices A ∈ Mn,m, B ∈ Mk,l we denote by
C = A{B} ∈ Mnk,ml a block matrix of the form

C =




A1B1 A2B1 . . . AmB1

A1B2 A2B2 . . . AmB2
...

...
. . .

...
A1Bk A2Bk . . . AmBk


 (16.9)

with blocks Aj ·Bi ∈ Mn,l such that Aj is a j-th column of the matrix A, and
Bi is i-th row of the matrix B.

Therefore, a new form of the matrix product is constructed by two rules for
block matrices:

1 Rule 1 for enumeration of blocks - a row of the second factor on a col-
umn of the first factor

2 Rule 2 for the form of blocks - a column of the first factor times a row of
the second factor.

Notice that any block AiBj of the matrix (16.8) is the Kronecker product

Ai ·Bj = Ai(Bj) = Bj(Ai). (16.10)

Rows and columns of the matrix (16.9) are represented by Kronecker prod-
ucts of rows and columns of matrices A and B:

CI = Ai(Br) for I = (r − 1)n + i, (16.11)

CJ = Bj(Ap) for J = (p− 1)l + j. (16.12)
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If we have enumeration of elements of a matrix from zero (but not from 1),
then I = rn + i, J = pl + j.

Lemma 16.5 The definition of a power

A{d} = A{A{d−1}} = A{d−1}{A}

for new form of the matrix product is correct.

Proof. Let enumeration of elements of matrix begin from zero. The (i + jn +
kn2)-th row of a matrix A{3} have the form Ai(Aj(Ak)) for any i, j, k by
(16.12). The (i + jn + kn2 + mn3)-th row of a matrix A{4} have the form
Ai(Aj(Ak(Am))) and so on. Columns can be presented analogous.

Obviously, the Kronecker product A(B) is symmetric if A and B are sym-
metric matrices. But, a new form of the matrix product A{B} is not symmetric
for example

A =
(

1 1
1 1

)
, B =

(
1 1
1 0

)
.

Lemma 16.6 If matrices A and B are symmetric, then (A{B})T = B{A}.

Proof. Let to transpose a block matrix (16.9)

(A{B})T =




(A1B1)T (A1B2)T . . . (A1B1)T

...
...

. . .
...

(AnB1)T (AnB2)T . . . (AnB1)T


 .

We get a statement by using a formula (AiBj)T = BT
j · (Ai)T = BjAi.

Corollary 16.3 If the matrix A is symmetric, then the new power of matrix
A{d} is symmetric also.

Theorem 16.3 The matrix of DWT in Paley enumeration (16.1) can be de-

fined as a new power (16.9) of the matrix W1 = H =
(

1 1
1 −1

)
:

Wn = Wk{Wn−k}.

Proof. Let 0 ≤ i, j < 2n are presented in the form i = m2k+l, j = r2n−k+t,
for 0 ≤ l, r < 2k, 0 ≤ m, t < 2n−k. Then,

< i, j >n=
k∑

s=1

isjn−s+1 +
n∑

s=k+1

isjn−s+1 =< l, r2n−k >n + < m2k, t >n,
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or they may by presented in the form

< i, j >n=< l, r >k + < m, t >n−k .

By (16.6) we get

w
(n)
ij = (−1)<l,r>k · (−1)<m,t>n−k = w

(k)
lr · w(n−k)

mt . (16.13)

The first block of the matrix Wn (for m = r = 0) consists of elements
w

(n)
lt = w

(k)
l0 ·w(n−k)

0t ≡ 1, and its block can represented as the 0-th column of
the matrix Wk multiplied by the 0-th row of the matrix Wn−k. Any block of
dimension 2k × 2n−k (for fixed m, r) of the matrix Wn has the form (16.13);
its block can be represented as the r-th column of the matrix Wk multiplied by
m-th row of the matrix Wn−k, and its block is disposed as mr-th block. This
is the definition of Wk{Wn−k}.

We recall [12] that ‖A‖E =
√∑n,m

k,l=1 a2
kl is the Euclidean norm. We in-

troduced the Euclidean orthogonality of matrices A,B ∈ Mn,m: we write
A⊥B , if

∑n,m
k,l=1 akl · bkl = 0. This definition coincides with the notion of

orthogonal vectors, whose coordinates are all elements of the matrix in any
fixed order.

We say that the collection of matrices {A(k)}n·m
k=1 constitute the orthonormal

E-basis (basis for the Euclidean norm) in the class Mn,m, if A(k)⊥A(l) for
k 6= l and ‖A(k)‖E = 1 for any k. For example, the standard orthonormal
E-basis is a complete collection of different matrices such that all elements
are equal to zero except one equal to 1.

A matrix is called orthogonal if A ·AT = E [13].
Collection of vectors {Ai} is called orthonormal if (Ai, Aj) = δij (Kro-

necker symbol).
Let ψk be rows of the DWT matrix in Paley enumeration Wn. In [10], for

the case n = 2N , Bochkarev have solved the extremal problem:

min
εk=±1

‖
2n−1∑

k=0

εkψk‖∞ = 2N ,

vectors eN,j are the solution of this problem.
Write the following vectors

e1,0 = (−1 1 1 1), e1,1 = (1 −1 1 1), e1,2 = (1 1 −1 1), e1,3 = (1 1 1 −1).

in the form of a matrix. Then, vectors em,4i+j = e1,j(em−1,i) are defined as
Kronecker products of matrices.

Note that the solution of this extremal problem for odd n is different:

min
ε
‖W2N−1ε‖∞ = 2N ,
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for N = 1, 2, 3.
By [10], the system {eN,j}2n−1

j=0 is the total orthogonal eigenvector system
for some linear rearrangement of the matrix DWT; this matrix is the Kronecker
power (W2)(n−1). But, this rearrangement is not the DWT matrix in Paley,
Walsh or Hadamard enumeration.

By this way we get a general method of constructing the basis.

Lemma 16.7 A collection of vectors (in the form of the Kronecker product)
{Ai(Bj)}n,k

i,j=1 is orthonormal if both vector collections {Ai}n
i=1, {Bj}k

j=1 are
orthonormal.

Proof. We get for the scalar product (Ai(Bj), Ak(Bl)) =

=
m∑

r=1

(airBj , akrBl) =
m∑

r=1

airakr · (Bj , Bl) = (Ai, Ak) · (Bj , Bl) = δik · δjl.

By Lemma 16.7, we obtain
Proposition 1. If matrices A ∈ Mn,n, B ∈ Mk,k are orthogonal, then ma-
trices A(B) and A{B} are also orthogonal. In this cases, the collection of
blocks {AiBj}n,k

i,j=1 in the matrix A{B} is an orthonormal E-basis of the class
Mn,k.

Proof. Let enumeration begin from zero. A j = (rk + s)-th row of matrix
A(B) have the form Ar(Bs). A j = (rk + s)-th column of matrix A{B} have
the form Bs(Ar). By (16.10) for blocks we have proven the statement.

3. Fast Walsh Transform
In this section, previous considerations will be used to formulate the fast

calculation algorithms for the discrete Walsh transform for different enumera-
tions.

Proposition 16.1 For any A,B ∈ Mn,n we have

H1(A ·B) = H1(A) · E1(B) = E1(A) ·H1(B).

Proof. By direct calculations

H(A)·E(B) =
(

A A
A −A

)
·
(

B 0
0 B

)
=

(
AB AB
AB −AB

)
= H(A·B).

Second equality can be proved in an analogous way.
Good used [13] the Proposition 16.1 for a construction of Fast algorithms

for discrete Walsh transform in Hadamard enumeration.
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Corollary 16.4 This algorithm is algorithm of the Fast Walsh Transform
(FWT)

Hn = H(En−1) ·E(H(En−2)) ·E2(H(En−3)) · . . . ·En−2(H(E)) ·En−1(H),

Hn = En−1(H) ·En−2(H(E)) ·En−3(H(E2)) · . . . ·E(H(En−2)) ·H(En−1).

Remark 16.2 We denote a unit matrix of order 2n by En, as it is the similar
notation for Wn, Un and Hn.

Clearly for matrices any order

E(A ·B) = E(A) · E(B). (16.14)

Theorem 16.4 For any A,B ∈ Mn,n we have

H1{A ·B} = H1{A} · E1(B).

Proof. We repeat the proof of the Proposition 16.1, but we permute rows of
matrices H(A) and H(AB) in the order 0, 2n−1, 1, 2n−1 + 1, 2, 2n−1 + 2,
3, . . .. In this way matrices H(A) and H(AB) convert into matrices H{A}
and H{AB}.

The submatrix of the matrix H1{A} consisting of even rows coincides with
the upper half of the matrix H1(A). The submatrix of the matrix H1{A} con-
sisting of odd rows coincides with the bottom half of the matrix H1(A).

By using the Proposition 16.1 and multiplication of matrices for a submatrix
of matrix H{A} and the matrix E(B), we obtain the analogous submatrix of
the matrix H{AB}.

Corollary 16.5 For matrices DWT in Paley enumeration we have the re-
currence

Wn = H1{En−1} · E1(Wn−1).

By using this relation, we get the following algorithm of the Fast discrete
Walsh transform in Paley enumeration

W3 = H1{E2} · E1(H1{E1}) · E2(H1),

W4 = H{E3} · E(H{E2}) · E2(H{E}) · E3(H),

W5 = H{E4} · E(H{E3}) · E2(H{E2}) · E3(H{E}) · E4(H)

and so on.

Proof. By using Theorems 16.3 and 16.4, we get

Wn = H{Wn−1 · En−1} = H{En−1} · E1(Wn−1).

In particular, W2 = H{E} · E(H).
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Combining this result and (16.14), we get W3 = H1{E2} · E1(W2) =

= H1{E2} · E1(H{E} · E(H)) = H1{E2} · E1(H1{E1}) · E2(H1).

Analogously we obtain

W4 = H{E3} · E(W3) = H{E3} · E(H{E2} · E(H{E}) · E2(H)),

W4 = H{E3} · E(H{E2}) · E2(H{E}) · E3(H)

.

Example 16.1 An example of this algorithm of the Fast discrete Walsh trans-
form in Paley enumeration is the following:

W2 = H{E} · E(W ) =




1 0 1 0
1 0 −1 0
0 1 0 1
0 1 0 −1


 ·




1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1


 ,

H1{E2} =




1 0 0 0 1 0 0 0
1 0 0 0 −1 0 0 0
0 1 0 0 0 1 0 0
0 1 0 0 0 −1 0 0
0 0 1 0 0 0 1 0
0 0 1 0 0 0 −1 0
0 0 0 1 0 0 0 1
0 0 0 1 0 0 0 −1




,

E1(H1{E1}) =




1 0 1 0 0 0 0 0
1 0 −1 0 0 0 0 0
0 1 0 1 0 0 0 0
0 1 0 −1 0 0 0 0
0 0 0 0 1 0 1 0
0 0 0 0 1 0 −1 0
0 0 0 0 0 1 0 1
0 0 0 0 0 1 0 −1




E2(H1) =




1 1 0 0 0 0 0 0
1 −1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 −1




.
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This algorithm is more simpler than algorithms of the Fast Walsh Transform
in [1], [13] and is similar to the Fast Fourier Transform.

For this reason, this result has been included in textbook [14].
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