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FOURIER ANALYSIS IN A SPACE OF CHARACTERISTIC
FUNCTIONS OF SUBSETS OF THE RATIONAL NUMBERS

J. E. GIBBS

ABSTRACT. The conventional dyadic algebra F (as in [3]) may be notated as
a division algebra over the field of two elements, with the integer singletons as
basal units. The space of characteristic functions of the elements of F admits
an analogue of Fourier analysis, extended here to the function space induced
similarly by the F-like algebra having the rational singletons as basal units.

1. INTRODUCTION: THE REAL DYADIC ALGEBRA

The function space of the title is isomorphic to the vector space underlying a
division algebra U whose elements are linear combinations

A=Y pala){z}
z€R

of real singletons {z} with coefficients
pa(2) €= {2, {0}
The sum A+ B of A, B € U is defined as the symmetric difference
A+B=AAB=(AUB)—-(ANB).

Such summation is extensible to a finite set of addends, and even to convergent
infinite series of terms in U. In particular, the sum of a set of pairwise disjoint
elements of U is equal to their union. Thus, for example,

Y fat=J s} =4
z€A z€A
The product of basal units {z},{y} is defined by
{zH{y} ={z+y}.
We also define
{z}o =00 =0{z} =0.

With the addition and multiplication thus defined, ® is isomorphic to the field
of two elements. Since

YoAat=4=Y ea@{z}= > ea@{zt= ) {z}

z€A z€R @ 4 (x)={0} @ a(z)={0}
and the set {{z} : € R} is linearly independent, we have
zeA iff pyu(z)={0}.

Thus ¢ 4(z) is the value at z of the characteristic function g, : R — @ of A.
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The function ¢ : 28 — ®R that takes each A € R to its characteristic function
@4 is a bijection. Its inverse ¢~ : @’ — 2R takes @4 to

A={z€R:p,) = {0}}.
The characteristic function ¢ 4, p satisfies
Y arp@){a} =A+B =" ps@){z} + ) ¢p@){z},
z€R z€R cz€R
which implies, by linear independence, that

©arp(@) = @a(z) + ¢p(2).

Thus the sum of the subsets A, B of R is mapped by ¢ to the pointwise sum ¢ 4 +¢p
of their characteristic functions.
The function ¢ 4 satisfies

Y eap@f{z} =AB =) wa(@){z} Y ws®){y}-

z€ER z€R yER

Since ZzEIR pa(z){z} = Zzem ¢a(z —y){z —y}, then,
Y eas@{z} =Y wa@—v)es@){z—yHy} = DY valz—y)es®){z}
z€R z€ER yeR z€R yeR
It follows that, at least formally,
0ap(@) = walz—y)ep®).
Yy€ER

Thus the product AB is mapped by ¢ to the convolution product ¢4 * ¢, where
the convolution operator - * - : (®®)2 — @R is defined formally by

(x*¥)(z) =Y x(z — y)P().
yER

If, for some = € R, the sum expressing ¢ 45(z) has infinitely many terms equal
to {0}, then ¢ 4 () is not determinate. In this case, p,p is determined, at best,
on a proper subset of R; therefore AB is not determinate. If A, B are to belong to
an algebra U, then, in particular, their product must be defined. This condition
will be satisfied if we stipulate that, for each A, B € U and each z € R, the sum
expressing ¢ 45(z) shall have only finitely many non-empty terms. Since

D pale—y)epy) = > ealz—y),
yER y€BN[inf B, z—inf A]
there are at most as many such terms as there are elements in the set
BN [inf B,z — inf 4],
which is finite if each non-empty A € U satisfies these conditions:

(i) A is bounded below;
(ii) A has finite intersection with each finite interval.

An immediate consequence of these conditions is that each non-empty A contains
its infimum. It turns out that (i) and (ii) are even sufficient to ensure that U is a
division algebra. Thus we are led to
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Definition 1.1. The real dyadic algebra U is the set
{o}U{ACR: forsome ap € A, ap =inf A and
for each £ € R, AN [ao,£] is finite}

with the addition and multiplication defined by

PAarB=PAt+¥B PaB=PA*¥PB-

The binary operations in U are defined here in terms of characteristic functions
rather than in terms of the corresponding elements of U, as typified by A in the
definition of the underlying set. It is not necessary, however, to appeal to the
characteristic functions for such definitions: A+ B has been defined as A A B; and

AB=Y"¢4(@){a} > wp®) (b} =D D f{a+b}.
a€R bER a€EAbEB

The discussion preceding Definition 1.1 shows that, for each A,B € U, the
product AB is defined (as also, of course, is A+ B). In verifying that U is indeed
an algebra, we shall next check that A+ B,AB € U. If A= B, then A+B =2 € U.
Wehave A+ @=AcU,@o+B=BecU. lf @+#A#B#g,then

inf(A + B) 2 inf {inf A, inf B}
and
(A+ B)N[inf(A+ B),£¢] S (AU B) N [inf(A + B),{]
S(Anfinf 4,¢)) U (BN [inf B,¢]),
which is finite; so A+ BeU. f A= or B=9,then AB=0 € U. If A,B # @,
then
inf AB = inf A + inf B,
and, with ag := inf A, by := inf B,
ABN[inf AB,€] C [ao+bo,§]N Y > {a+b},
a€AN[ag,&—bg] bEBN[bg,&—ap]

which is finite; so AB € U. Thus addition and multiplication are closed in U. This
ensures that the following verifications of the remaining field axioms are not merely
formal; in particular, summations formally over R are actually finite.

Addition and multiplication are commutative:

ParB=Pa+T¥B=¢BTPA=PBra

Pap() =D oAz —v)es®) =Y ¢p(@—y)pa (¥) = vpalz);
yER y€eR

and associative:

ParB+C) =Pa T ¥Broc =PAT¥B T Yc =ParB T Pc =Pa+B)+Cs

PA(BC) (z) :Z Z‘PA(:U -y — 2)ec(2)

YyER z€R

=YY pal@—z—v)ep)ec(z)

y€ER z€R
=90(AB)C($);
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and multiplication is distributive over addition:

Pas+oy(@) = val®—y) (pp) + vc(®))

y€ER

=Y palz—v)es®) + Y ealz —y)ec)
yER y€R

=@ aptac().

The zero of U is @, and the unity is {0}. Each A € U is its own additive
inverse; we shall not have occasion to use the expression —A. The existence of the
multiplicative inverse A~! € U* of each A € U* := U — {&} may be proved thus:

If AeS*:={S€U*:for somez €R, S={z}}, then A = {inf A} and hence
A7l ={—inf A} € S* C U*. If A € U* — S*, then we may write

A={ag,a1,...} (@p<a1<..))
and A = {ao} T, where
T ={a} 'A={-a} A€ T:={T €U :infT = 0}.

The notation assumes that A (and therefore T') is infinite, but it is not intended to
exclude the case of finite A, T.
T~! may be expressed as a (convergent) infinite product, using the notation of
a mized product (0,00) X U — U defined by
zA={¢: forsomen € A, £ =zn}.

We shall show that

oo

7' =[] @T) ={0,t1,.. } {0,2ts,..}... € TC U™,
r=0

Convergence [1] of such an infinite product may be proved by using
Lemma 1.1. A sequence (P,,) of subsets of R converges iff for some (Cy),

CnCCpp1 (n€P), lim Co=R, CpaNP,=CoNP, (v=n).

n—oo

If such a (C,) exists, then (C,, N P,) converges, and
P:=limP, =1limC, N P,.
Proof. If there is a (C,,) satisfying the proposed conditions, then
[e.e]
U Cn =limC, =R.
n=1

So, for each z € R, for some m € P, we have € Cp,. Let n(z) denote the least
such m. Then z € Cy,() and for each v 2 n(z),

®p, (z) = PCp(zyNP, (z) = PCr(z)NPr(a) (z).

Thus the sequence (¢p, ) of characteristic functions converges to ¢ p, defined by
¥p (1') = uli_)I{.lo <pP,_, (.'E) = SOCH(I) nPn@) (Z')

Consequently (P,) converges. (C, N P,) also converges, for

C.NP,=C,NP,t1 g Cn+1 N Ppti1.
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It follows that
P=RNP=1lmC,NlimP, =lim(C,NF,).
Again, if (P,) converges to P, then (<p P") converges pointwise to ¢p, defined by
pp() = lim pp, (2).
For each n € P, let
Cn:={z: foreach v 2 n, ¢p () = ep, ()}
Then C, N P, = C, N P, (v 2n); and Cy, C Cpr41, so that (Cy,) converges to

C:=|JC.CR
n=1
Since (pp,) converges, for each z € R there is an n € P such that z € C,. Hence
R C C;s01limC, = C =R. Thus (C,) meets the proposed conditions. O

To prove that the infinite product expression of 7! is convergent, we apply
Lemma 1.1 to the sequence (P,) of partial products, where

r=0
If the sequence (Cy,) is defined by Cy, = (—00,2"1), then (Cy) satisfies the condi-
tions of the lemma. Thus (P,) converges and

0o n—1
P:=[[@7T)= lim P, = lim ((~00,2°t:)n [ @'T)).
r=0 noee r=0
To show that P € T, we note that inf P = 0 and that
PN [ng] g PN Cn(ﬁ) = Pn({) N Cn(&) = Pn(ﬁ) n [07 2n(€)tl),
which is finite since P,¢) € U. That P = T~ is seen by using the formula
T2 =2'T (TeT:={T€U:infT=0}, re€Z),
which may be proved by observing that
T? = Z fz+yt+ >, fz+yb+ Z {z+y}.
z€T,yeT, z<y zeT,yeT, x>y z=y€T
Renotation of (z,y) as (y,z) shows that
Yo fetyt= Y fy+ar= Y {z+y}
z€T, yeT, z<y yeT, z€T, y<zx z€T,yeT, x>y

and therefore

T*= Y {z+y}=) {2} =2T

z=yeT zeT

It follows by induction that T?" = 2"T (r € N). This result is extended to negative
r by using the left-associativity of the mixed product (an immediate consequence
of the definition): thus, for each r € N,

7% =2 T =2t =0T
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So T?" =2'T (r € Z). Two applications of this equality yield
n—1 n—1
TP, =T[[@T) =T[[T* =T* =2"T ={0,2"ts,...}.
r=0 r=0

Hence, as in the proof of Lemma 1.1,
(pTP(x) = ‘PCn(I)ﬂTPn(,) (I) = <p(—00,2"($)t1)n2"'(z)T(x) = SO{O}(:I:)!

which implies that TP = {0}, so that T-* = P. It follows that

oo
A = {ao} ' TV = {—ao} P = {—ao} [[ (2" ({—a0} 4)) € U.
r=0
We have proved that U is a field under the addition and multiplication proposed
in Definition 1.1. Since ® is a subfield of U, the additive group U, equipped with
the restriction, to ® x U, of the multiplication in U, is a vector space over ®. For
the same reason, this vector space, equipped with the multiplication in U, is a
commutative division algebra over ®.
The conventional dyadic algebra F [3] is clearly isomorphic to the subalgebra

Uz:={Ae€U:ACZ}
of U.

2. RATIONAL DYADIC EXPONENTIATION

To facilitate our treatment, in Section 3, of harmonic analysis in the subspace
Ug of U, we introduce, beyond addition and multiplication, a third operation:
Definition 2.1. Rational dyadic exponentiation is the operation of raising a
base B € U to a power BT X € U, where the exponent

XeUp:={AeU: ACQ}.
The operator - T -: U x Ug — U is defined by

B1X=) B

zeX
iff both the following conditions are satisfied:

(i) B#@ or infX 20;
(ii) X is finite or inf B > 0.

Condition (i) excludes the occurrence of @® (x < 0) as a term in the defining
sum. Condition (ii) ensures convergence of ) .+ B® to an element of U.
It may be proved that for each

(B,z) e Ux Q— {8} x (—00,0),

there is a unique B* € U. It is not excluded that B” takes one or more other values
not in U. Such failure of B” to be single-valued does occur, but it is convenient to
confine attention to the unique branch of this function taking values in U. In this
paper, then, the notation B* will be understood to refer to this branch alone. We
shall obtain an explicit expression (as a convergent infinite product) for the general
rational power B™/" (B € U,m € Z,n € P,(m,n) = 1). From this it will be clear
that we have seized the intended branch of the function, that taking values in U.
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To reduce B™/™ to a more convenient form, we define
T={-inf B}BeT.
Then B = {inf B} T; so
B™™ = {inf BY™/™ T™/™ = {(m/n) inf B} T™/™.
A more manageable form of the exponent is
m/n = 2*p/q,

where k,p € Z, q € P, each of p,q is odd, and (p,q) = 1. These conditions
determine k, p, g uniquely.

Using the canonical (monomorphic) embedding of the rational integers Z into
the 2-adic integers Zg, and the fact [2] that the odd integers are invertible in Zs,
we write 7 := p/q as a 2-adic integer (in the notation of formal series)

Zrﬂi =r=plg= Zpﬂi /Zqﬂj.

iEN ieN jeN
Then, at least heuristically,
TP/4 — TT — T ienTi2" — HT”T‘ _ H(TT)”'
ieN ieN
Convergence of the infinite product to an element P of U is proved by writing
T={0,t1,...} (0O<t;1<..))
and applying Lemma 1.1, with C,, = (—00, 2"t;), to the sequence of partial products

n—1

Pn s H(22T)7‘1 . {07t1a e '}To b {0’ Qn—ltl, o .}Tn*l ’
1=0

as in the proof given earlier of the convergence of T~1 = [[;2,(2'T). Convergence
of the infinite product P validates the assumption above that

TEsenmi2' = H Tmi2",
i€N
The formal series r = p/q is computed by division of the series p by the series g, as
in the following numerical illustration.
‘We shall calculate
-3/10
Bm/n={1,2,8} /1 ,

an easy example, since B is finite and has integer elements. We note first that
B™™ = (=3/10}{0,1,7}* "% = (~3/10} (271 {0,1,7} "*/?)
and we evaluate {0, 1, 7}_3/ 5. As a 2-adic integer,
—3=1x2"+0x2"+1x2>+....

For brevity, we write this in conventional binary notation continued indefinitely
leftwards from the (suppressed) binary point, with the leftwards recurring period
...1 written as 1. In this notation, —3 = 101, 5 = 0101, and the quotient

—3/5 =101/0101 = ... 10011001 = 1001
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is obtained by left-going long division, starting at the right. Hence

(0,1,7}7%° = {0,1,7)° = {0,1,7}* {0,1,7}* {0,1,7}*

therefore
{0,1,7}7%/° = (2°{0,1,7})(22{0,1,7})(2* {0, 1,7}) ...
={0,1,7} {0 8,56} {0,16,112} ..
={0,1,7,8,9,15,56,57,63} {0, 16 112} ...
={0,1,7,8,9,15,16,17,23,24,25,31,.. .} ;
SO

{1,2,8} %1% = {—3/10} (271 {0,1,7,8,9,15,16,17,23,24,25,31,...}).

The following properties of rational dyadic exponentiation - 1 - will prove helpful
in our development of harmonic analysis in U:

Lemma 2.1. For each B € U* (inf B > 0), the function g : Ug — U defined by
Be(X)=B1X
is a field monomorphism.

Proof. The conditions B € U*, inf B > 0 ensure that expressions entering this
proof exist and converge. We omit the details. By an obvious generalisation of
the equalities

Y =Y+ Y =YY e+,

a€EX+Y zeX yey aeXY z€X yeY
we obtain
B1(X+Y)= Y B*=) B°+) B'=B1X+B1Y,
a€eX+Y zeX yey
B1(XY)= Y B*=> Y B""=3 B") B'=(B1X)(B1Y).
a€EXY z€X yeY zeX yey

Thus Bp is a field homomorphism. To prove that 3 is injective, suppose that,
for some X,Y € Ug, we have X # Y and Bp(X) = B5(Y). Then

Bp(X +Y) = Bp(X)+Bp(Y) =
But, by our supposition, X +Y # &; so
inf (B5(X +Y)) = inf (Zaexw )
Consequently (inf B) inf (X +Y) € B5(X +Y); hence
Bp(X +Y) #@.

The contradiction shows that 35 is injective, and thus a field monomorphism. [

= (inf B)inf (X +Y).

Lemma 2.2. For each B € U*, X € Uy :=Uq— {9}, Y € Ug (inf B,inf X > 0),
BT(X1Y)=(B1X)1Y.
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Proof. We prove first that for each B € U* (inf B > 0), X € Uy, y € Q,
BT (XY)=(BTX)".
This is done by making the substitutions
y=p/q p€Z,g€eP (pqg=1), X=27
and using Lemma 2.1:
Bp(XY) = Bg(27) = (B5(2))" = (Bp(2))7)" = (Bp(27))" = (Bp(X))”.
Equivalently, B T (X¥) = (B 1 X)¥. It follows that
(B1X)1Y=) (B1X)¥=>) BT(XY).
yeY yeYy
If Y is finite, then
(B1X)1Y=) B1(X¥)=B1Y XY=B1(X1Y)
yey yey

and for this case a proof of associativity is complete. Suppose, then, that Y is
infinite. Write Y = {yo,¥1,--.} (yo <1 < ...) and we get

n—1 n—1
(BTX)1Y = lim Y B1(X¥)= lim BT Y X'.
r=0 r=0

If Y is bounded above by some £, then Y = Y N [inf Y, £], which, by Definition 1.1,
is finite, contrary to supposition. Thus Y is not bounded above; so limy,, = co.
For some ng € N, then, for each n > ng, we have y, > 0 and may write

Yn =Pn/tn (Pn,n €P, (Pn,gn) =1), X =2Z7"
Hence
inf X = g inf Z,, XY = Zn¥n = ZPn.
So, since X € Up,
inf (X¥») = inf (Z8") = ppinf Z, =y, inf X € Q, inf (X¥) > 0.

Likewise
inf (Binf(x ””>) — inf (X¥)inf B = (y, inf X) inf B.
Therefore
inf A, =inf Y B®=inf (Bi“f(x””) = (inf B) y inf X.
zEY 2, Xvr
Thus

lim (inf A,,) = lim (inf B) y,, inf X = oo,
which implies that lim A,, = &. Consequently

n—1
(B1X)1Y = lim BTy X" =lmA,+ BT (X 1Y) =BT (X 1Y)
r=0 O
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3. FOURIER ANALYSIS IN THE RATIONAL DYADIC SPACE

We have seen that the additive group U, equipped with the restriction to @ x U
of the multiplication in U, is a vector space over ®. We shall discuss harmonic
analysis in the subspace Ug of U, beginning with

Definition 3.1. The Fourier transform operator™: Ug — Ug is defined by
A=PTA=>"P"

T€EA

(The defining series exists and is convergent because P # @ and inf P > 0. From
now on we shall generally not mention such details, leaving them to the reader.)

This apparently arbitrary definition will be given some plausibility by a proof
that ~is a self-inverse automorphism of the field Ug. (Our analysis differs in this re-
spect from conventional Fourier analysis, whose transform operator is a skew-inverse
1somorphism which preserves sums and takes pointwise products into convolution
products and vice versa. As it were by way of compensation, dyadic conjugation is
skew-inverse, not self-inverse like its conventional analogue, complex conjugation.)

A proof depends upon the following property of dyadic exponentiation - T - :

P1P={1}.

To see this, we define J = {0,1}, and we sum the (convergent) geometric series
S P =({0)+P) =N =7
r=0
in the usual way. (The inverses quoted may be checked by multiplication.) Then

PTP=) P° =i11»’"+1 =1P’§:]PT =PJ={1}.

z€P r=0 r=0

The element {1} of Ug is a (left and right) ezponentiative identity:

1A= {1"= {z}=4, At{}=) A"=A'=A

TEA €A ze{1}
Using Lemma 2.2, we can prove that the Fourier transform ~ is self-inverse:
A)=PT@PTA=PTPTA={1}TA=A

Since, by definition, A=P 7 A = 3p(A), Lemma 2.1 shows that ~ is monomorphic,
and thus a self-inverse automorphism of Ug.

It will be shown that the Fourier operator ~ may be viewed as an orthogonal
transform. Such transforms are conventionally defined on a unitary space (a vector
space over C with an Hermitian inner product). The definition of such an inner
product uses complex conjugation. We therefore introduce an analogue (-)* of the
complex conjugation operator -.

The complex conjugate is already defined on the field C underlying a unitary
space, and trivially induces conjugation of vectors in that space. The meagreness
of the field ® underlying the space Ug seems to preclude non-trivial definition of
an analogous conjugate on ® that would induce conjugation of vectors in Ug. The
operator (-)" is therefore defined directly on (a subset of) Ug:
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7 Definition 3.2. The dyadic conjugate A* of A € Ug is defined by
Pa-(z) = Z ©p= (y)
yeﬁ
iff the summation on the right converges for each x € Q.

The dyadic conjugate A* is not defined for every A € Ug. For example, {1}" is
undefined. Indeed, {1} =P 7 {1} =P. So, formally,

P{1}* (1) = Z‘P}P(y) = Z {0}.

y€EP r=1

But (-)* is not empty. Indeed =P1P={1}. So, for each z € Q,
ep(2) = D 0pe(y) = 0p= (1).
ye{1}
Definition 3.3. The inner product (A, B) € ® of A, B € Uy is defined by
(4,B) =) ¢a(2)ep-(2)
z€Q
iff B* is defined and the summation on the right converges.
The definiens here is only formally a summation over Q: it may be written
Z pa(@)pp-(2) = Z ¢p-(z) = Z Pa(z).
zeQ z€EA rEB*

The partial function (-,-) : U2 — & is symmetric: (4, B) = (B, A). Indeed, if
(A, B) is defined, then so is B* = >_yeB ¥p=(y), which implies that this summation
is finite. This justifies the last step in the calculation

B)=) ¢ @)=Y 0p@)=>3 ¢p®).
z€EA z€A ycB yeB €A
Since inf P* = z inf P = x, we have pp.(y) =2 if z > y. So
Doee)= Y. we(y),
z€EA z€AN[inf A,y]

which shows that the summation is finite. By definition of addition, then,

z%w(y) ‘PZIGA]}”(y) epra®)ez(y)-
€A

Thus we obtain the Ug-analogue of Parseval’s theorem: iff (A, B) is defined,
B) =Y i) = 0s0)es)
yeB yeQ

The symmetry of the last expression shows that (A, B) = (B, A) .
The function (-,-) is also bilinear: for each A\, u € ®,

(4,AB+ uC) = A (A, B) + u(4,C)
iff (A, B),(A,C) are defined. Indeed, the condition mentioned implies that
D ea@es®), Y eaw)es(y)

yeQ yeQ
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are finite summations. So

A 0aWes@) + 1Y eaWea®) =D i) (Mes®) + ues®)) -

yeQ yeQ yeQ

It is easy to see that, for each A € Ug, Ap4(y) = paa(y). Hence

Mog(y) + 1eay) = ex3¥) + 0,6 = PrpreW) = ¢~ (B+uc) V),
where the last equality follows from the automorphic property of ~. Therefore
MA,B) + 1 (A,C) = 0z(1)e~(a4uc) (y) = (A, AB +uC).
yeQ

Since @ is not an ordered field, positive definiteness of the associated quadratic
form is out of the question, so the properties of symmetry and bilinearity alone are
sufficient justification for calling (-,-) an inner product.

As analogues of familiar properties of the conventional Fourier transform,

) =P1 (P =@ 1B ={1}*={¢}
and, by the self-inverseness of =,
¢ ="((P%)) =P~.
To complete our view of = as an orthogonal transform, we prove
Theorem 3.1. The set {P¢ : £ € Q} is orthonormal and complete in Ug.

Proof. The set {P¢ : £ € Q} is orthonormal: for each £,n € Q (€ #1n),

(P%, Py = th{g}(y)w{n}(y) = Z P ) =y €) =9,
y€eQ ye{¢}

[B<]] = (B, %) = ey () = {0}
The orthonormal set {P¢ : £ € Q} is complete in Ug: if, for each A € Ug, £ € Q,
we have (A,P*) = @, then
2= 01W)e~ee)®) = > ea®)eie;v) = ¢a(€)-
yeQ yeQ

Hence A = @ , which implies that

A="(A)=P1A=P1o=) P"=0.

z€eD
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