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Abstract We introduce the space D/;(R+) of dyadic distributions and the space S5 (R+)
of dyadic tempered distributions based on the dyadic derivative. !

1. Introduction

Distribution theory goes back to Sobolev [1], [2] and Schwartz [3]-[5], al-
though the first generalized functions - for instance, the famous Dirac delta-
function - appeared already in Dirac’s papers on quantum mechanics. At
present, distribution theory is well developed and is the subject of many mono-
graphs (see, for example, Gelfand and Shilov [6], Vekua [7], Antosik, Mikusin-
ski and Sikorski [8], Zemanian [9], and other authors). Distributions have
found a wide range of applications in mathematical physics, physics, quantum
mechanics, and other branches of natural sciences (see, for example, Vladimirov
[10], or Schwartz [3]). Distribution theory is used in the proof of some results
of harmonic analysis (see, for instance, Stein [11], Ch. 3, Garcia-Cuerva and
Rubio de Francia [12], Ch. 3, or Edwards [13], Ch. 3), the theory of functions
of the complex variable [7], and other areas of mathematics.

In the monograph of Taibleson [14] a sketch of distribution theory on local
fields is given. In the monograph of Vladimirov, Volovich and Zelenov [15]
the theory of distributions on the field of p-adic numbers is developed.

Vilenkin [16] introduced the notion of the distribution on locally compact
commutative group. But he restricted himself only by three concrete exam-
ples of such distributions. In particular, he did not introduce the operation of
differentiation of these distributions.

! The work was supported by the Russian Foundation for Basic Research, Grant N 08-01-00669.



58 Dyadic Distributions

We introduce the space D/,(R;.) of dyadic distributions and the space S,(R-)
of dyadic tempered distributions on the base of dyadic derivative which was
introduced by Onneweer [17]. The completeness of the spaces D/,(R.) and
S (R4 ) is proven.

2. Lemmas

Let N (or Z) be the set of all positive (respectively non negative) integers.
Forz € Ry and n € N we set

T, =[2"] (mod2), z_,=[2'""z] (mod2), (5.1)

where z,, and x_,, are equal to 0 or 1.
Let us introduce the distance p*(z,y) on Ry as follows

io Z+°° i — yil

* ) — (3 (3

p ('Ivy) = 2! 1|"L‘7i_y7i|+ Ta IL‘,yGR+.
i=1 =1

It is not difficult to prove the inequalities

p(z,y) =y -zl < p*(z,y), x,y€ Ry
The function f : Ry — R is called uniformly p*-continuous on R, if
Ve>0 39>0:p"(x,y) <0, z,y€Ry=|fly)—flx)<e.

Let us consider the dyadic convolution f * g of two functions f € L(R)
and g € L>®(R4):

(f *g)(x) = . f(o™(z,y))g(y)dy.

LEMMA 5.1 Ifthe function f is uniformly p*-continuous and bounded on R,
then for all g € Ry, the dyadic convolution (f * g)(x) is also uniformly p*-
continuous and bounded on R .

We define the function h : (0, +00) — (0, +00) by the equalities
h(z)=2", 2"<z<2"' ne.

Let us set

.
A% (z) :/0 (W) (@, )dt, z€ Ry, a>0.
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LEMMA 5.2 For « > 0, n € Z, the function A is bounded on R and
A% € L(R4).

DEFINITION 5.1 Let « > 0 and f € L(Ry) U L®(Ry). If there exists the
finite limit

FO(x) = lim (f % A7) (2),

a—00

at the point © € R, then the number f(®)(z) is called the dyadic derivative
(DD) of order « of the function f at the point .

This definition has been introduced by C.W. Onneweer [17].
For (x,y) € Ry X R4, we set

o0

t(x7 y) = Z(wny—n + x—nyn)-

n=1

This sum is finite, because z_; = 0 for i > i(z) € N, (see (5.1)).
The generalized Walsh functions v, (y € R ) are defined by the equalities

dy() = Pla,y) = (1)1,
Let us consider the function system
Som,n(l') = ¢($7 m2_n)X[0,2")(33)a (m e€N,ne Z) (5.2)

LEMMA 5.3 Each function of the system (5.2) is uniformly p*-continuous on
R;.

LEMMA 5.4 Foreach o > 0 and x € R there exists the DD cp,(%)n(x) and

907(7?,)71 () =2"%mn(z)

where the integer r is uniquely defined by the imbedding
[m2™", (m +1)27") C [27,2"1),
moreover

(Pmn * AL) =2"%mn  for k> max{r,logy[(m+ 1)27"]}.

3. The Space of Dyadic Distributions

DEFINITION 5.2 The function @ is called infinitely dyadic smooth on R if
there exists the dyadic derivative () (x) for all « € N, which is uniformly
p*-continuous and bounded on R .
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We denote by C‘(,;o )(R+) the set of all such functions and by suppy the
support of the function ¢ : R4 — R. The set

A=m2™" (m+1)2™), meZy, nezZ,
is called the dyadic interval.

DEFINITION 5.3 The function is called dyadic compactly supported, if:
1 There exists a dyadic interval A such that suppgo(o‘) C AVa € Z4,
2 For each o € Z the sequence (p * A%a))(x) converges to ¢\ (x)
uniformly on R,

The set of all dyadic compactly supported functions from C’fuoo) (R4) will
be denoted by D4(R.). By the Lemmas 5.3 and 5.4 we have Dg(R1) D @mn
(see (5.2)).

REMARK 5.1 There exists a compactly supported function ¢ € Cfl(UOO)<R+)
such that p ¢ Dg(R.y ). For example, pon(r) = X(gony(7), (n € Z) is such
a function.

DEFINITION 5.4 The sequence {p,}12 C D4(Ry.) is called convergent in

n=1

the space D4(R.) to the function o € Dy(R4) if:

1 There exists a dyadic interval A such that suppgp%a) C Aforalln,a €
Z+,‘

2 gp%a)(x) converges to go(()a)(x) uniformly on A for each oo € Z.

In this case we will write: @, — @o in Dg(Ry).
Let us consider the functional f : Dy(Ry) — R. Its value on the element
¢ € Dy(R4) will be denoted by (f, ¢).

DEFINITION 5.5 The linear continuous functional f : Dg(Ry) — R is
called dyadic distribution.

We denote by D/,(R.) the set of all dyadic distributions.
For any functions f1, fo € D/(R) we set

(le1+02f27§0) :cl(flaw)_’—CQ(fQ)SD)u SDEDd(R-i-)a \V/Cl702 ER

Then D/,(R4) will be a linear space.
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THEOREM 5.1 Each function f € Lj,.(Ry) generates a dyadic distribution,
if we set

(frp) = : f(x)p(z)dz, Vo€ Dg(Ry). (5.3)

Dyadic distributions of the form (5.3) are called regular. The remaining
dyadic distributions are called singular.
An example of singular dyadic distribution gives the dyadic 6- function:

(62, 0) = 0(0), ¥ € Da(R4).

DEFINITION 5.6 For f € Di)(Ry) and oo € N, we set

(f¢) = (f.¢'*), ¢ € Da(Ry).

DEFINITION 5.7 The sequence {f,}>y C D/,(Ry) is called convergent to
the dyadic distribution fy, if

lim (fna(p) = (anSO)v \V/SO € Dd(R+)

n—-+00

In this case we will write: f, — foin D) (R4).

DEFINITION 5.8 The sequence {fn}t25 C Lioe(Ry) is called to be conver-
gent to the function fy € Lio.(Ry) in the space Li,.(R+), if this sequence
converges to the function fy in the space L(A) for all dyadic intervals A.

In this case we will write f,, — fo in Ljpe(R+).
THEOREM 5.2 If f,, — fo in the space Lio.(R..), then f, — foin D))(R5).

DEFINITION 5.9 The sequence {f,}t> C D!)(R+) is called fundamental

n=1
in D)(Ry) if for each function ¢ € Dy(Ry) the sequence {(fn, )}, is
Sfundamental in R.

The following theorem states the completeness of the space D/,(R..).

THEOREM 5.3 Ifthe sequence { f,}1> C D!y(R..) is fundamental in D',(R.),
then the functional defined by the equality

(fa QO) = lim (fnagp)v VSO € Dd(R+)a

n—-+o0o

is linear and continuous on Dy(R1), e.g., f € D/(Ry).
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4. The Space of Dyadic Tempered Distributions

Let us define the space of fast decreasing functions in the neighborhood of
+00.

DEFINITION 5.10 The function ¢ € clire (R4) is said to belong to the set
Sa(Ry), if

lim %o () =0, Ve,8eZ,.

T——+00
It is evident that the set S;(R.) is a real linear space.

DEFINITION 5.11 The sequence {p,}12 C Sy(Ry) is said to be conver-
gent in the space Sq(R.) to the function pg € Sq(R+) if

2o () — mﬁcpéa) (), n— 400 uniformlyon R, Yo,(f € Zy.

This fact will be written as follows: ¢, — ©g in Sg(R4).

Let us consider the linear functional f : Sy(R4+) — R. Its value on the
function ¢ € Sy(Ry) will be denoted by (f, ). The linear functional f :
Sq(R4+) — R is called continuous if the condition ", — o in Sz(Ry)"
implies

(fion) = (fi9), Ve € Sa(R4).

DEFINITION 5.12 The linear continuous functional f : Sg(Ry) — R is
called the dyadic tempered distribution.

The set of all dyadic tempered distributions will be denoted by S/,(R.). Let
us introduce the operations of addition of two dyadic tempered distributions
f1, fo € S)(R4) and the multiplication of such distributions on real numbers
as follows:

(c1fi + cafa, ) = c1(fr, ) + ca(f2, ¥),

where ¢1,c2 € Ry, and ¢ € Sy(R4).

Then, the set S,(R ) is the real linear space which is conjugate to the space
Sa(R4).

Let us recall the known terminology. The function f : Ry — R has the
polynomial growth in the neighbourhood of +o0 if there exists a number 5 €
Z such that f(z) = O(2P) as x — +oo.

THEOREM 5.4 If a local integrable function f(x) has the polynomial growth
in the neighborhood of +00, then it generates the dyadic tempered distribution
by the equality

(fip) = : f@)p(z)dz, ¢ € Sa(Ry).
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Let us introduce the set of convergent sequences in the space S/;(R+.).

DEFINITION 5.13 The sequence { f,,},' C S4(R.) is said to be convergent
to the element fy € Si(Ry), if

lim (fn, %) = (fo,9),

n—-—+00
for each function p € Sy(R+).

) is said to be fundamen-

DEFINITION 5.14 The sequence { f,},:>5 C S,
®) is fundamental in R for

tal in the space S),(R,.), if the sequence {( I,
each function ¢ € Sq(R).

(+
i

THEOREM 5.5 The space Sy(R.) is complete, i.e., if the sequence { f,,} 125 C
S!(R+) is fundamental in the space S),(R.), then the functional f deﬁned by
the equality

(f,p) = hm (fm ©), Ve Si(Ry),

belongs to the space S),(R.).

Let us define the operation of dyadic differentiation of a dyadic tempered
distribution.

DEFINITION 5.15 If f € Si,(Ry) and o € N, then we set

(F ) = (f,6™), v € Su(Ry).

It is evident that for every ¢ € Sg(Ry) we have (@) € Sy(R.), Vo € N.
Therefore it follows from the Definition 5.15 that

VfeSy(Ry) 3feSi(R.) VaeN.
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