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Abstract We introduce the space D′
d(R+) of dyadic distributions and the space S′d(R+)

of dyadic tempered distributions based on the dyadic derivative. 1

1. Introduction
Distribution theory goes back to Sobolev [1], [2] and Schwartz [3]-[5], al-

though the first generalized functions - for instance, the famous Dirac delta-
function - appeared already in Dirac’s papers on quantum mechanics. At
present, distribution theory is well developed and is the subject of many mono-
graphs (see, for example, Gelfand and Shilov [6], Vekua [7], Antosik, Mikusin-
ski and Sikorski [8], Zemanian [9], and other authors). Distributions have
found a wide range of applications in mathematical physics, physics, quantum
mechanics, and other branches of natural sciences (see, for example, Vladimirov
[10], or Schwartz [3]). Distribution theory is used in the proof of some results
of harmonic analysis (see, for instance, Stein [11], Ch. 3, Garcia-Cuerva and
Rubio de Francia [12], Ch. 3, or Edwards [13], Ch. 3), the theory of functions
of the complex variable [7], and other areas of mathematics.

In the monograph of Taibleson [14] a sketch of distribution theory on local
fields is given. In the monograph of Vladimirov, Volovich and Zelenov [15]
the theory of distributions on the field of p-adic numbers is developed.

Vilenkin [16] introduced the notion of the distribution on locally compact
commutative group. But he restricted himself only by three concrete exam-
ples of such distributions. In particular, he did not introduce the operation of
differentiation of these distributions.

1The work was supported by the Russian Foundation for Basic Research, Grant N 08-01-00669.
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We introduce the space D′
d(R+) of dyadic distributions and the space S′d(R+)

of dyadic tempered distributions on the base of dyadic derivative which was
introduced by Onneweer [17]. The completeness of the spaces D′

d(R+) and
S′d(R+) is proven.

2. Lemmas
Let N (or Z+) be the set of all positive (respectively non negative) integers.

For x ∈ R+ and n ∈ N we set

xn ≡ [2nx] (mod2), x−n ≡ [21−nx] (mod2), (5.1)

where xn and x−n are equal to 0 or 1.
Let us introduce the distance ρ∗(x, y) on R+ as follows

ρ∗(x, y) =
+∞∑

i=1

2i−1|x−i − y−i|+
+∞∑

i=1

|xi − yi|
2i

, x, y ∈ R+.

It is not difficult to prove the inequalities

ρ(x, y) ≡ |y − x| ≤ ρ∗(x, y), x, y ∈ R+.

The function f : R+ → R is called uniformly ρ∗-continuous on R+ if

∀ε > 0 ∃δ > 0 : ρ∗(x, y) < δ, x, y ∈ R+ ⇒ |f(y)− f(x)| < ε.

Let us consider the dyadic convolution f ∗ g of two functions f ∈ L(R+)
and g ∈ L∞(R+):

(f ∗ g)(x) =
∫

R+

f(ρ∗(x, y))g(y)dy.

Lemma 5.1 If the function f is uniformly ρ∗-continuous and bounded on R+,
then for all g ∈ R+, the dyadic convolution (f ∗ g)(x) is also uniformly ρ∗-
continuous and bounded on R+.

We define the function h : (0,+∞) → (0, +∞) by the equalities

h(x) = 2n, 2n ≤ x < 2n+1, n ∈ .

Let us set

Λα
n(x) =

∫ 2n

0
(h(t))αψ(x, t)dt, x ∈ R+, α > 0.
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Lemma 5.2 For α > 0, n ∈ Z+, the function Λα
n is bounded on R+ and

Λα
n ∈ L(R+).

Definition 5.1 Let α > 0 and f ∈ L(R+) ∪ L∞(R+). If there exists the
finite limit

f (α)(x) = lim
α→∞(f ∗ Λα

n)(x),

at the point x ∈ R+, then the number f (α)(x) is called the dyadic derivative
(DD) of order α of the function f at the point x.

This definition has been introduced by C.W. Onneweer [17].
For (x, y) ∈ R+ ×R+, we set

t(x, y) =
∞∑

n=1

(xny−n + x−nyn).

This sum is finite, because x−i = 0 for i ≥ i(x) ∈ N , (see (5.1)).
The generalized Walsh functions ψy (y ∈ R+) are defined by the equalities

ψy(x) ≡ ψ(x, y) = (−1)t(x,y).

Let us consider the function system

ϕm,n(x) ≡ ψ(x,m2−n)X[0,2n)(x), (m ∈ N,n ∈ Z). (5.2)

Lemma 5.3 Each function of the system (5.2) is uniformly ρ∗-continuous on
R+.

Lemma 5.4 For each α > 0 and x ∈ R+ there exists the DD ϕ
(α)
m,n(x) and

ϕ(α)
m,n(x) = 2rαϕm,n(x)

where the integer r is uniquely defined by the imbedding

[m2−n, (m + 1)2−n) ⊂ [2r, 2r+1),

moreover

(ϕm,n ∗ Λα
k ) = 2rαϕm,n for k ≥ max{r, log2[(m + 1)2−n]}.

3. The Space of Dyadic Distributions
Definition 5.2 The function ϕ is called infinitely dyadic smooth on R+ if
there exists the dyadic derivative ϕ(α)(x) for all α ∈ N , which is uniformly
ρ∗-continuous and bounded on R+.
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We denote by C
(∞)
W (R+) the set of all such functions and by suppϕ the

support of the function ϕ : R+ → R. The set

∆ = [m2−n, (m + 1)2−n), m ∈ Z+, n ∈ Z,

is called the dyadic interval.

Definition 5.3 The function is called dyadic compactly supported, if:

1 There exists a dyadic interval ∆ such that suppϕ(α) ⊂ ∆∀α ∈ Z+,

2 For each α ∈ Z+ the sequence (ϕ ∗ Λ(α)
n )(x) converges to ϕ(α)(x)

uniformly on R+.

The set of all dyadic compactly supported functions from C
(∞)
w (R+) will

be denoted by Dd(R+). By the Lemmas 5.3 and 5.4 we have Dd(R+) ⊃ ϕm,n

(see (5.2)).

Remark 5.1 There exists a compactly supported function ϕ ∈ C
(∞)
w (R+)

such that ϕ /∈ Dd(R+). For example, ϕ0,n(x) = X[0,2n)(x), (n ∈ Z) is such
a function.

Definition 5.4 The sequence {ϕn}+∞
n=1 ⊂ Dd(R+) is called convergent in

the space Dd(R+) to the function ϕ0 ∈ Dd(R+) if:

1 There exists a dyadic interval ∆ such that suppϕ
(α)
n ⊂ ∆ for all n, α ∈

Z+;

2 ϕ
(α)
n (x) converges to ϕ

(α)
0 (x) uniformly on ∆ for each α ∈ Z+.

In this case we will write: ϕn → ϕ0 in Dd(R+).
Let us consider the functional f : Dd(R+) → R. Its value on the element

ϕ ∈ Dd(R+) will be denoted by (f, ϕ).

Definition 5.5 The linear continuous functional f : Dd(R+) → R is
called dyadic distribution.

We denote by D′
d(R+) the set of all dyadic distributions.

For any functions f1, f2 ∈ D′
d(R+) we set

(c1f1 + c2f2, ϕ) = c1(f1, ϕ) + c2(f2, ϕ), ϕ ∈ Dd(R+), ∀c1, c2 ∈ R.

Then D′
d(R+) will be a linear space.
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Theorem 5.1 Each function f ∈ Lloc(R+) generates a dyadic distribution,
if we set

(f, ϕ) =
∫

R+

f(x)ϕ(x)dx, ∀ϕ ∈ Dd(R+). (5.3)

Dyadic distributions of the form (5.3) are called regular. The remaining
dyadic distributions are called singular.

An example of singular dyadic distribution gives the dyadic δ- function:

(δd, ϕ) = ϕ(0), ϕ ∈ Dd(R+).

Definition 5.6 For f ∈ D′
d(R+) and α ∈ N , we set

(f (α), ϕ) = (f, ϕ(α)), ϕ ∈ Dd(R+).

Definition 5.7 The sequence {fn}+∞
n=1 ⊂ D′

d(R+) is called convergent to
the dyadic distribution f0, if

lim
n→+∞(fn, ϕ) = (f0, ϕ), ∀ϕ ∈ Dd(R+).

In this case we will write: fn → f0 in D′
d(R+).

Definition 5.8 The sequence {fn}+∞
n=1 ⊂ Lloc(R+) is called to be conver-

gent to the function f0 ∈ Lloc(R+) in the space Lloc(R+), if this sequence
converges to the function f0 in the space L(∆) for all dyadic intervals ∆.

In this case we will write fn → f0 in Lloc(R+).

Theorem 5.2 If fn → f0 in the space Lloc(R+), then fn → f0 in D′
d(R+).

Definition 5.9 The sequence {fn}+∞
n=1 ⊂ D′

d(R+) is called fundamental
in D′

d(R+) if for each function ϕ ∈ Dd(R+) the sequence {(fn, ϕ)}+∞
n=1 is

fundamental in R.

The following theorem states the completeness of the space D′
d(R+).

Theorem 5.3 If the sequence {fn}+∞
n=1 ⊂ D′

d(R+) is fundamental in D′
d(R+),

then the functional defined by the equality

(f, ϕ) = lim
n→+∞(fn, ϕ), ∀ϕ ∈ Dd(R+),

is linear and continuous on Dd(R+), e.g., f ∈ D′
d(R+).
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4. The Space of Dyadic Tempered Distributions
Let us define the space of fast decreasing functions in the neighborhood of

+∞.

Definition 5.10 The function ϕ ∈ C
(+∞)
w (R+) is said to belong to the set

Sd(R+), if

lim
x→+∞xβϕ(α)(x) = 0, ∀α, β ∈ Z+.

It is evident that the set Sd(R+) is a real linear space.

Definition 5.11 The sequence {ϕn}+∞
n=1 ⊂ Sd(R+) is said to be conver-

gent in the space Sd(R+) to the function ϕ0 ∈ Sd(R+) if

xβϕ(α)
n (x) → xβϕ

(α)
0 (x), n → +∞ uniformly on R+ ∀α, β ∈ Z+.

This fact will be written as follows: ϕn → ϕ0 in Sd(R+).
Let us consider the linear functional f : Sd(R+) → R. Its value on the

function ϕ ∈ Sd(R+) will be denoted by (f, ϕ). The linear functional f :
Sd(R+) → R is called continuous if the condition "ϕn → ϕ0 in Sd(R+)"
implies

(f, ϕn) → (f, ϕ), ∀ϕ ∈ Sd(R+).

Definition 5.12 The linear continuous functional f : Sd(R+) → R is
called the dyadic tempered distribution.

The set of all dyadic tempered distributions will be denoted by S′d(R+). Let
us introduce the operations of addition of two dyadic tempered distributions
f1, f2 ∈ S′d(R+) and the multiplication of such distributions on real numbers
as follows:

(c1f1 + c2f2, ϕ) = c1(f1, ϕ) + c2(f2, ϕ),

where c1, c2 ∈ R+, and ϕ ∈ Sd(R+).
Then, the set S′d(R+) is the real linear space which is conjugate to the space

Sd(R+).
Let us recall the known terminology. The function f : R+ → R has the

polynomial growth in the neighbourhood of +∞ if there exists a number β ∈
Z such that f(x) = O(xβ) as x → +∞.

Theorem 5.4 If a local integrable function f(x) has the polynomial growth
in the neighborhood of +∞, then it generates the dyadic tempered distribution
by the equality

(f, ϕ) =
∫

R+

f(x)ϕ(x)dx, ϕ ∈ Sd(R+).
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Let us introduce the set of convergent sequences in the space S′d(R+).

Definition 5.13 The sequence {fn}+∞
n=1 ⊂ S′d(R+) is said to be convergent

to the element f0 ∈ S′d(R+), if

lim
n→+∞(fn, ϕ) = (f0, ϕ),

for each function ϕ ∈ Sd(R+).

Definition 5.14 The sequence {fn}+∞
n=1 ⊂ S′d(R+) is said to be fundamen-

tal in the space S′d(R+), if the sequence {(fn, ϕ)}+∞
n=1 is fundamental in R for

each function ϕ ∈ Sd(R+).

Theorem 5.5 The space S′d(R+) is complete, i.e., if the sequence {fn}+∞
n=1 ⊂

S′d(R+) is fundamental in the space S′d(R+), then the functional f defined by
the equality

(f, ϕ) = lim
n→+∞(fn, ϕ), ∀ϕ ∈ Sd(R+),

belongs to the space S′d(R+).

Let us define the operation of dyadic differentiation of a dyadic tempered
distribution.

Definition 5.15 If f ∈ S′d(R+) and α ∈ N , then we set

(f (α), ϕ) = (f, ϕ(α)), ϕ ∈ Sd(R+).

It is evident that for every ϕ ∈ Sd(R+) we have ϕ(α) ∈ Sd(R+), ∀α ∈ N .
Therefore it follows from the Definition 5.15 that

∀f ∈ S′d(R+) ∃f (α) ∈ S′d(R+) ∀α ∈ N.
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