Chapter 6

ON DYADIC FRACTIONAL DERIVATIVES AND INTEGRALS

B.I. Golubov

Dept. of Higher Mathematics, Moscow Institute of Physics and Technology (State University) Moscow, Russia

golubov@mail.mipt.ru

Abstract

The paper presents two dyadic analogs of the Lebesgue theorems on the differentiation of indefinite integral and on the integration of the derivative of a function. It is considered also the dyadic fractional integration by parts and the problem of dyadic fractional differentiation and integration of the integral depending on a real parameter. Most of these results are new also when considered dyadic derivatives and integrals of the first order. ¹

1. Introduction

The notions of pointwise and strong dyadic derivatives and integrals are known. The strong dyadic derivatives and integrals are defined on the segment [0,1] or on the positive half-line R_+ for some classes of functions. Sometimes they are defined on dyadic groups G or K, where G is isomorphic to the modified dyadic segment $[0,1]^*$ and K is isomorphic to the modified half-line R_+^* .

P.L. Butzer and H.J. Wagner [1] introduced the strong dyadic derivative $D(f) \in L(G)$ for functions $f \in L(G)$. They proved that for the functions of Walsh-Paley system $\{w_n\}_{n=0}^{\infty}$ the equalities

$$D(w_n) = nw_n, \quad (n \in Z_+),$$

hold. This means that the Walsh-Paley functions are eigenfunctions of the operator ${\cal D}.$

¹The work was supported by the Russian Foundation for Basic Research, Grant N 08-01-00669.

In the same paper [1] for functions $f \in L(G)$ the strong dyadic integral $I(f) \in L(G)$ is introduced and proven are the equalities

$$D(T(f)) = I(D(f)) = f$$
, if $\hat{f}(0) \equiv \int_G f(x)d\mu(x) = 0$,

where μ is the normalized Haar measure on G, i.e., $\mu(G) = 1$.

Thus, *the fundamental theorem of dyadic integral calculus* has been established. In the same paper the equivalence of the following three conditions was proven:

- 1 There exists D(f) = g;
- 2 There exists a function $g \in L(G)$ such that $\hat{g}(n) = n\hat{f}(n), n \in \mathbb{Z}$, where

$$\hat{f}(n) = \int_{G} f(x)w_{n}(x)d\mu(x),$$

are Walsh - Fourier coefficients of the function f;

3 There exists a function $g \in L(G)$ such that $f = I(G) + \hat{f}(0)$.

In another paper [2] by the same authors, the strong dyadic derivative D(f) for functions $f \in L(R_+)$ is introduced and the equality $(D(f))^\sim(x) = x\tilde{f}(x)$ is proven, where \tilde{f} is the Walsh - Fourier transformation of the function f.

For the functions $f\in L(R_+)$, H.J. Wagner [3] defined the strong dyadic integral I(f) and proved the equalities

$$(D(I(f)) = f, \quad I(D(f)) = f.$$

(The last equality is proved under the condition $\tilde{f}(0) = 0$). In the same paper [3] the following criterion is proven: For a pair of functions $f, g \in L(R_+)$ the equality holds if and only if $\tilde{g}(0) = 0$ and $\tilde{g}(x) = \tilde{f}(x)/x$, x > 0.

In the paper [4], P.L. Butzer and H.J. Wagner investigated properties of *the pointwise dyadic derivatives* for functions defined on the segment [0, 1].

C.W. Onneweer [5] introduced a modified dyadic derivative $D^{(1)}(f)$ for functions $f \in L(G)$ and proved the equalities

$$D^{(1)}(w_k) = 2^n w_k, \quad 2^n \le k < 2^{n+1}, \quad n \in \mathbb{Z}_+.$$

In the papers [5] and [6], C.W. Onneweer introduced also two strong dyadic derivatives $D^{(1)}(f)$ and $D^{[1]}(f)$ for functions $f \in L(K)$. In [6], he proved that the derivatives $D^{(1)}$ and $D^{[1]}$ have the same domain that does not coincide with L(K). In the paper [7], C.W. Onneweer introduced the pointwise p-adic derivative $d_p^{(\alpha)}(f)(x)$ and the strong p-adic derivative $D^{(\alpha)}(f)$ of fractional

order α for functions defined on the compact group G_p , which is the countable sum of cyclic groups of order $p \geq 2$. In this case, the strong p-adic derivative $D_p^{(\alpha)}(f)$ for functions in the spaces $L^q(G_p)$ and $C(G_p)$ is defined. C.W. Onneweer obtained the formulae for the derivatives of order α of functions that are the characters of the group G_p . It follows from this formulae that the characters of the group G_p are the eigenfunctions of the operator D_p^{α} .

In the same paper [7], the strong p-adic integral of fractional positive order α is introduced and the equalities

$$D_p^{(\alpha)}(I_p^{(\alpha)}(f)) = f, \quad I_p^{(\alpha)}(D_p^{(\alpha)}(f)) = f,$$

under condition $\int_{G_p} f(x) d\mu(x) = 0$ are proved. Also, a criterion is obtained in order that for the pair of functions f,g the equality $g = I_p^{(\alpha)}(f)$ or $g = D_p^{(\alpha)}(f)$ to be fulfilled.

Let us note that He Zelin [8] obtained the similar results for the fractional derivatives and integrals of Butzer-Wagner type.

The theory of dyadic differentiation and integration is presented explicitly in the books [9] and [10]. Some aspects of this theory are considered in the book [11].

In our paper [12] the modified strong dyadic integral $J_{\alpha}(f)$ and derivative $D^{(\alpha)}(f)$ of fractional positive order α have been introduced. Notice that the derivative $D^{(\alpha)}(f)$ for functions $f \in L(R_+)$ actually is a modification of the derivative of C.W. Onneweer, who considered the case $f \in L(K)$.

We formulate below two dyadic analogs of the Lebesgue theorems on the differentiation of indefinite integral and on the integration of the derivative of a function. We consider also dyadic fractional integration by parts and the problem of dyadic fractional differentiation and integration of the integral depending on a real parameter. The most results are new also for dyadic derivatives and integrals of the first order.

2. Definitions and Auxiliary Results

As usually, R_+ is the positive real axis. By $L^p(E)$, $1 \le p \le \infty$, we denote the space of Lebesgue measurable functions f on the measurable set $E \subset R_+$ with finite norm

$$||f||_{L_p(E)} = \left(\int_E |f(x)|^p dx\right)^{\frac{1}{p}}, \quad 1 \le p < \infty, \quad ||f||_{L^{\infty}(E)} = ess \sup_{x \in E} |f(x)|.$$

For a number $x \in R_+$ and a natural n, we set

$$x_n \equiv \lceil 2^n x \rceil \pmod{2}, \quad x_{-n} \equiv \lceil 2^{1-n} x \rceil \pmod{2},$$
 (6.1)

where [a] is the integer part of the number a, x_n and x_{-n} are equal to 0 or 1.

Let us note that x_n (x_{-n}) is the n-th dyadic digit of the integer part (the fractional part respectively) of the number $x \in R_+$. The dyadic rational number $x \in R_+$ has finite dyadic expansion, i.e., $x_n = 0$ for $n \ge n(x)$.

As $x_{-n} = 0$ for $n \ge n(x)$, then for $(x, y) \in R_+ \times R_+$, the non negative integer

$$t(x,y) = \sum_{n=1}^{\infty} (x_n y_{-n} + x_{-n} y_n),$$

is defined.

Let us introduce the Walsh kernel

$$\psi(x,y) = (-1)^{t(x,y)}. (6.2)$$

The Walsh - Fourier transform $F[f] \equiv \tilde{f}$ of the function $f \in L(R_+)$ is introduced by the equality

$$F[f](x) \equiv \tilde{f}(x) = \int_{R_{+}} \psi(x, y) f(y) dy. \tag{6.3}$$

This definition can be generalized for functions in the space $L^p(R_+)$, where $1 . In this case, the Walsh - Fourier transform <math>F[f] \equiv \tilde{f}$ is defined as the limit of the sequence

$$\int_0^{2^n} f(y)\psi(x,y)dy, \quad n \in \mathbb{Z}_+,$$

by the norm of the space $L^p(R_+)$.

The properties of the Walsh - Fourier transform are similar to that of classical Fourier transform.

Let us introduce the operation of dyadic addition \oplus on R_+ by setting

$$x \oplus y = z$$
, for $x, y \in R_0$,

where the number z has dyadic digits $z_n = x_n + y_n \mod 2$, $n \in \mathbb{Z} \setminus \{0\}$ and x_n, y_n are defined by the rule (6.1).

Let us note that

$$z_n = \sum_{n=1}^{\infty} 2^{n-1} z_{-n} + \sum_{n=1}^{\infty} \frac{z_n}{2^n},$$

and the case $z_n = 1$ for $n \ge n(z)$ is not excluded.

For the Walsh kernel (6.2) the equality

$$\psi(x \oplus y, t) = \psi(x, t)\psi(y, t), \tag{6.4}$$

holds, if $t, x, y \in R_+$ and $x \oplus y$ is not a dyadic rational (see [9], p. 421). Thus for fixed t and x the equality (6.4) for almost all $y \in R_+$ is valid.

Let us note that

$$\psi(x,k) = w_k(x - \lceil x \rceil), \quad (k \in \mathbb{Z}_+, x \in \mathbb{R}_+),$$

where $\{w_k\}_{k=0}^{\infty}$ is the Walsh-Paley system, which is orthonormal on the segment [0,1).

The Walsh-Fourier coefficients $\hat{f}(k)$ of the function $f \in L[0,1)$ are defined by

$$\hat{f}(k) = \int_0^1 f(x)w_k(x)dx, \quad k \in Z_+.$$
 (6.5)

Let us remind the definition of W-continuity of a function.

The function f is called W-continuous at the point $x \in R_+$, if for every $\varepsilon > 0$ there exists a $\delta > 0$ such that

$$|f(x \oplus y) - f(x)| < \varepsilon \quad \text{for} \quad 0 \le y < \delta,$$

(see [11], Ch. 1).

Let us note that for each function $f \in L(R_+)$ its Walsh-Fourier transform \tilde{f} is W-continuous on R_+ (see [11], theorem 6.1.5).

Let us introduce the dyadic Lebesgue point of a function.

The point $x \in R_+$ is called the dyadic Lebesgue point of a locally integrable function f, if this function is finite at this point and

$$\lim_{n \to +\infty} 2^n \int_0^{2^{-n}} |f(x \oplus t) - f(x)| dt = 0.$$
 (6.6)

We generalize the notion of dyadic Lebesgue point as follows.

The dyadic segment of the rank n, $(n \in Z)$ is the set $\Delta_i^{(n)} = \left[\frac{i}{2^n}, \frac{i+1}{2^n}\right)$ where $i \in Z_+$. The point $x \in R_+$ will be called *the binary d-point* of the function f, if f(x) is finite and

$$\lim_{n \to +\infty} \frac{1}{|\Delta_i^{(n)}|} \int_{\Delta_i^{(n)}} f(t)dt = f(x), \tag{6.7}$$

where $\Delta_i^{(n)}$ is dyadic segment containing the point x and $|\Delta_i^{(n)}|=2^{-n}$.

Every dyadic Lebesgue point of a function is also its binary d-point, i.e., (6.7) follows from (6.6).

For a locally Lebesgue integrable function f we set

$$F(x) = \int_0^x f(t)dt, \quad x \in R_+.$$

It is known that F'(x) = f(x) almost everywhere on R_+ [15] and each point x for which the condition $F'(x) = f(x) \neq \pm \infty$ holds is a binary point of the function f (see [11], Ch. 1).

Thus, almost all points of the positive real axis R_+ are binary d-points of every function locally integrable on R_+ . It can be proven that almost all points of the positive real axis r_+ are dyadic Lebesgue points of each function locally integrable on R_+ .

For the function $f \in L[0,1)$, we set

$$S_m(f)(x) = \sum_{k=0}^{m-1} \hat{f}(k)w_k(x),$$

i.e., $S_m(f)(x)$ is the Walsh-Fourier sum of order m of the function f. The following theorem is known.

THEOREM 6.1 Let the function $f \in L[0,1)$ has a finite value at the point $x \in [0,1)$. Then, the condition

$$\lim_{n \to +\infty} S_{2^n}(f)(x) = f(x),$$

holds if and only if x is the binary d-point of the function f (see [11], p. 59).

This statement follows from the equality

$$S_{2^n}(f)(x) = \frac{1}{|\Delta_i^{(n)}|} \int_{\Delta_i^{(n)}} f(t)dt, \quad (n \in \mathbb{Z}_+), \tag{6.8}$$

where $\Delta_i^{(n)}$ is the dyadic segment containing the point x (see [11], p. 45). Let us formulate an analog of the Theorem 6.1 for the functions defined

Let us formulate an analog of the Theorem 6.1 for the functions defined on R_+ . For this aim we need the generalized Walsh-Dirichlet integral of the function f:

$$S_y(f)(x) = \int_0^y \tilde{f}(t)\psi(x,t)dt. \tag{6.9}$$

For the integral (6.9) the equality (6.8) is also valid (see [9], p. 428). Thus, the following theorem is true.

THEOREM 6.2 Let the function $f \in L(R_+)$ has a finite value at the point $x \in [0,1)$ and $S_y(f)(x)$ is its generalized Walsh-Dirichlet integral. Then, the condition

$$\lim_{n \to +\infty} S_{2^n}(f)(x) = f(x),$$

holds if and only if x is a binary d-point of the function f.

Lemma 6.1 For each $n \in Z$ and $\alpha > 0$ the function

$$W_n^{\{\alpha\}}(x) \equiv \lim_{m \to +\infty} \int_{2^{-n}}^{2^n} \psi(x, y) y^{-\alpha} dy,$$
 (6.10)

is well defined at each point x > 0, $W_n^{\{\alpha\}} \in L(R_+)$ and the limit in the right-hand side of (6.10) also exists in the metric of the space $L(R_+)$.

For $\alpha = 1$, the statement of this lemma is known (see [9], p. 434).

Definition 6.1 Let $\alpha > 0$, $f, g \in L^p(R_+)$, $1 \le p \le \infty$ and

$$\lim_{n \to +\infty} \|f * W_n^{\{\alpha\}} - g\|_{L^p(R_+)} = 0.$$

Then, the function $g \equiv I_{\{\alpha\}}(f)$ is called the Wagner strong dyadic integral (WSDI) of order α of the function f in the space $L^p(R_+)$.

For $\alpha=1,\,p=1$, this definition was introduced by H.J. Wagner (see also [9], Ch. 9). Using this definition and 6.1 one can prove the following

THEOREM 6.3 Let $\alpha > 0$, $f, g \in L(R_+)$. Then, the function g is the WSDI of order α of the function f in the space $L(R_+)$ if and only if

$$\tilde{g}(0) = 0$$
 and $\tilde{g}(x) = \tilde{f}(x)x^{-\alpha}$ for $x > 0$.

For $\alpha=1$ this theorem was proven by H.J. Wagner [3] (see also [9], p. 435).

3. Dyadic Analogs of Two Lebesgue Theorems

Let us remind the definition of dyadic convolution f*g of two functions $f,g\in L[0,1)$:

$$(f * g)(x) = \int_{[0,1)} f(y)g(x \oplus y)dy, \quad x \in [0,1).$$
 (6.11)

It is known that $f * g \in L(0,1)$ and $\widehat{(f * g)}(k) = \widehat{f}(k)\widehat{g}(k)$ where \widehat{f} are the Walsh - Fourier coefficients of the function f (see (6.5)).

The convolution (6.11) is well defined also for the case $f \in L^p(0,1)$, $1 \le p \le \infty$, $g \in L(0,1)$, and $f * g \in L^p[0,1)$.

Let us set

$$T_r^{(\alpha)}(x) = \sum_{k=0}^{2^r - 1} k^{\alpha} w_k(x), \quad (\alpha \in R, r = 0, 1, \ldots).$$
 (6.12)

In (6.12) and below we will assume $0^0 = 1$. We denote by X[0,1) any of the spaces $L^p[0,1)$, $1 \le p \le \infty$.

He Zelin [8] introduced the following

DEFINITION 6.2 Let $\alpha \in R$, $f \in X[0,1)$ and there exists a function $g \in X[0,1)$ such that

$$\lim_{r \to \infty} \|f * T_r^{(\alpha)} - g\|_X = 0.$$

Then, for $\alpha > 0$ (or $\alpha < 0$) the function g is called the strong dyadic derivative (SDD) of order α (or the strong dyadic integral (SDI) of order $(-\alpha)$) of the function f in the space X[0,1).

In both cases we will write $g = T^{(\alpha)} f$.

He Zelin [8] proved the equality $T^{(-1)}f=I(f)$, where I(f) is the strong dyadic integral of the function $f\in X[0,1)$ in the space X[0,1), which was introduced by P.L. Butzer and H.J. Wagner [1]. Moreover, in [8] for $\alpha\in R$, the equality

$$(\widehat{T^{(\alpha)}}f)(k) = k^{\alpha}\widehat{f}(k), \quad k \in \mathbb{Z}_+, \quad \text{and} \quad f, T^{(\alpha)}f \in X[0,1),$$

has been proved.

For $\alpha>0$ every function $f\in L^p[0,1)$ has the SDI $T^{(-\alpha)}f$ in the space $L^p[0,1)$ and

$$T^{(-\alpha)}f = (f * T_{\infty}^{(-\alpha)}),$$

where

$$T_{\infty}^{(\alpha)}(x) = \sum_{k=0}^{\infty} k^{-\alpha} w_k(x) \in L^p[0,1).$$

The series $\sum_{k=0}^{\infty} k^{-\alpha} w_k(x)$ converges to the function $T^{(-\alpha)}f$ in the space L[0,1) and also at each point $x \in (0,1)$ if $\alpha>0$.

It is proven in [8] that if $T^{(\alpha)}f$ exists in the space $L^p[0,1)$, $1 \le p \le \infty$ for some $\alpha \in R \setminus \{0\}$, then $T^{(-\alpha)}(T^{(\alpha)}f) = f$.

Let us introduce the pointwise analog of the Definition 6.2.

DEFINITION 6.3 Let $\alpha \in R$, $f \in L[0,1)$ and there exists the finite limit

$$t^{(\alpha)}f(x) \equiv \lim_{r \to \infty} (T_r^{(\alpha)} * f)(x)$$

at the point $x \in [0,1)$. Then, for $\alpha \geq 0$ (or $\alpha < 0$) the number $t^{(\alpha)}f(x)$ is called the dyadic derivative (DD) of order α (or the dyadic integral (DI) of order $(-\alpha)$ respectively) of the function f at the point x.

The following statement is true.

THEOREM 6.4 Let $\alpha \in R \setminus \{0\}$ and the function $f \in L[0,1)$ has the SDD $T^{(\alpha)}f$ of order α in the space L[0,1) for $\alpha > 0$ (or it has the SDI $T^{(\alpha)}f$ of order $(-\alpha)$ for $\alpha < 0$) in the space L[0,1). Then, there exists $t^{(-\alpha)}(T^{(\alpha)}f)(x)$ at the point $x \in [0,1)$ if and only if x is a binary d-point of the function f. In this case,

$$t^{(-\alpha)}(T^{(\alpha)}f)(x) = f(x).$$

In particular, the last equality is true almost everywhere on [0, 1).

It follows from this theorem the following corollary.

COROLLARY 6.1 Under the conditions of the Theorem 6.4, the equality

$$t^{(-\alpha)}(T^{(\alpha)}f)(x) = f(x)$$

holds at each dyadic Lebesgue point $x \in [0,1)$ of the function f. In particular, this equality is valid almost everywhere on [0,1).

For $\alpha=-1$ this corollary may be considered as a dyadic analog of the classical Lebesgue theorem on the differentiation of indefinite Lebesgue integral. For $\alpha=1$ it may be considered as a dyadic analog of the classical Lebesgue theorem on the integration of the ordinary derivative (see, for example, [16], Ch. 9).

Let us set

$$U_r^{(\alpha)}(x) = w_0(x) + \sum_{n=0}^r \sum_{j=0}^{2^n - 1} 2^{n\alpha} w_{2^n + j}(x), \quad (\alpha \in R, r = 0, 1, \ldots).$$

DEFINITION 6.4 Let $\alpha \in R$, $f \in X[0,1)$. If there exists a function $g \in X[0,1)$ such that

$$\lim_{r \to \infty} \|f * U_r^{(\alpha)} - g\|_X = 0,$$

then for $\alpha > 0$ (or $\alpha < 0$) the function g is called the modified strong dyadic derivative (MSDD) of order α (or the modified strong dyadic integral (MSDI) of order $(-\alpha)$ respectively) of the function f in the space X[0,1).

In this case we will write $g = U^{(\alpha)} f$.

DEFINITION 6.5 Let $\alpha \in R$, $f \in L[0,1)$. If there exists the finite limit

$$u^{(\alpha)}f(x) \equiv \lim_{r \to \infty} (U_r^{(\alpha)} * f)(x)$$

at the point $x \in [0,1)$, then for $\alpha > 0$ (or $\alpha < 0$) the number $u^{(\alpha)}f(x)$ is called the modified dyadic derivative (MDD) of order α (or the modified dyadic integral (MDI) of order $|\alpha|$ respectively) of the function f at the point x.

THEOREM 6.5 Let $\alpha \in R \setminus \{0\}$ and for the function $f \in L[0,1)$ there exists $U^{(\alpha)}f$ in the space L[0,1). Then there exists $u^{(\alpha)}(U^{(\alpha)}f)(x)$ at the point $x \in [0,1)$ if and only if x is a binary d-point of the function f. In this case

$$u^{(-\alpha)}(U^{(\alpha)}f)(x) = f(x).$$

In particular this equality holds almost everywhere on [0, 1).

COROLLARY 6.2 Let $\alpha \in R \setminus \{0\}$ and for the function $f \in L[0,1)$ there exists $U^{(\alpha)}f$ in the space L[0,1). Then the equality

$$u^{(-\alpha)}(U^{(\alpha)}f)(x) = f(x)$$

holds at each dyadic Lebesgue point $x \in [0,1)$ of the function f, and hence almost everywhere on [0,1).

The results similar to the Corollary 6.2 for the functions $f \in L(R_+)$ were obtained by us in the paper [12] (see also [10], Ch. 3).

Let us note that for the functions $f \in L[0,1]$ the equality $(I_r(f))^{[r]}(x) = f(x)$ holds almost everywhere on [0,1) if $\int_0^1 f(x) dx = 0$ and r is a natural number, where $I_r(f)$ is the strong dyadic integral and $f^{[r]}$ is the strong dyadic derivative of order r in the sense of Butzer and Wagner. That was proved by F. Shipp [17] as an answer on a question of H.J. Wagner [18]. But in the paper [17] there is not any characterization of the points in which the equality mentioned above holds.

Let us remind the notion of the dyadic convolution f * g of two functions $f, g \in L(R_+)$

$$(f * g)(x) = \int_{R_{+}} f(y)g(x \oplus y)dy, \quad x \in R_{+}.$$
 (6.13)

As for the ordinary convolution the following equality $(\tilde{f} * g) = \tilde{f}\tilde{g}$ holds. The dyadic convolution (6.13) is well defined also in the case $f \in L^p(R_+)$, $1 \le p \le \infty$, $g \in L(R_+)$, and $f * g \in L^p(R_+)$.

Let us introduce the notation

$$\Lambda_n^{\{\alpha\}}(x) = \int_0^{2^n} t^{\alpha} \psi(x, t) dt, \quad (x \in R_+, \alpha > 0, n \in Z).$$

This function is defined and bounded on R_+ for $\alpha > 0$ and $n \in \mathbb{Z}$.

DEFINITION 6.6 If $\alpha > 0$ and for the function $f \in L(R_+)$ there exists the finite limit

$$d^{\{\alpha\}}(f)(x) = \lim_{n \to \infty} (f * \Lambda_n^{\{\alpha\}})(x)$$

at the point $x \in R_+$, then the number $d^{\{\alpha\}}(f)(x)$ is called the dyadic derivative (DD) of order α of the function f at the point x.

The following theorem is an analog of the Theorem 6.5 for functions defined on the positive half-line.

Theorem 6.6 Let $\alpha > 0$ and the function $f \in L(R_+)$ has the WSDI of order α in the space $L(R_+)$. Then the DD $d^{\{\alpha\}}(I_{\{\alpha\}}(f))(x)$ exists at the point $x \in R_+$ if and only if x is a binary d-point of the function f. In this case the equality $d^{\{\alpha\}}(I_{\{\alpha\}}(f))(x) = f(x)$ is valid. In particular, this equality holds almost everywhere on R_+ .

COROLLARY 6.3 Let $\alpha \in R \setminus \{0\}$ and the function $f \in L(R_+)$ has the WSDI $I_{\{\alpha\}}(f)$ in the space $L(R_+)$. Then, the equality $d^{\{\alpha\}}(I_{\{\alpha\}}(f))(x) = f(x)$ holds at each dyadic Lebesgue point $x \in [0,1)$ of the function f, and hence almost everywhere on [0,1). Therefore this equality is valid almost everywhere on the segment [0,1).

Let us note that the equality $(I_{\{1\}}(f))^{\{1\}}(x) = f(x)$ was proved by J. Pal and F. Shipp almost everywhere on R_+ (see [19] or [11], p. 445). But they used an other definition of the derivative, namely that one of P.L. Butzer and H.J. Wagner.

4. **Dyadic Integration by Parts**

The results of this section can be considered as the fractional dyadic analogs of classical formula of integration by parts.

THEOREM 6.7 Let $f \in L^p[0,1)$, $g \in L^q[0,1)$, $\frac{1}{p} + \frac{1}{q} = 1$, $1 \le p < \infty$ and for some $\alpha > 0$ the SDD $T^{(\alpha)}f$ and $T^{(\alpha)}g$ exist in the spaces $L^p[0,1)$ and $L^q[0,1)$ respectively. Then the equality

$$\int_{0}^{1} (T^{(\alpha)}f)(x)g(x)dx = \int_{0}^{1} f(x)(T^{(\alpha)}g)(x)dx$$
 (6.14)

holds. For $\alpha<0$ the similar statement is valid also for the strong dyadic integrals $T^{(\alpha)}f$ and $T^{(\alpha)}g$.

An analog of this theorem is true also for the modified strong dyadic derivatives and integrals.

THEOREM 6.8 Let $f \in L^p[0,1)$, $g \in L^q[0,1)$, $\frac{1}{p} + \frac{1}{q} = 1$, $1 \le p < \infty$, and for some $\alpha > 0$ the MSDD $U^{(\alpha)}f$ and $U^{(\alpha)}g$ exist in the spaces $L^p[0,1)$ and $L^q[0,1)$ respectively. Then the equality

$$\int_0^1 (U^{(\alpha)}f)(x)g(x)dx = \int_0^1 f(x)(U^{(\alpha)}g)(x)dx,$$

holds. For $\alpha < 0$ the similar statement is valid also for the MSDI $U^{(\alpha)}f$ and $U^{(\alpha)}g$.

Let us formulate the similar results for the functions defined on the positive half-line R_+ . To this aim we introduce the function $h:(0,+\infty)\to(0,+\infty)$ as follows

$$h(x) = 2^{-n}, \quad 2^n \le x < 2^{n+1}, \quad n \in \mathbb{Z}.$$
 (6.15)

For $\alpha > 0$ we set

$$\Lambda_n^{\alpha}(x) = \int_0^{2^n} (h(t))^{-\alpha} \psi(x, t) dt, \quad x \in R_+.$$

LEMMA 6.2 For $\alpha > 0$, $n \in \mathbb{Z}$, the function Λ_n^{α} is defined and bounded on the positive half-line R_+ and $\Lambda_n^{\alpha} \in L(R_+)$. Moreover,

$$\tilde{\Lambda}_n^{\alpha}(x) = (h(x))^{-\alpha} X_{[0,2^n)}(x) \quad \textit{for} \quad x > 0 \quad \textit{and} \quad \tilde{\Lambda}_n^{\alpha}(0) = 0,$$

where X_E is the characteristic function of the set $E \subset R_+$ (see [10], Ch. 3).

Using this lemma we can introduce the following definition.

DEFINITION 6.7 If for the function $f \in L^p(R_+)$, $1 \le p \le \infty$, there exists a function $\varphi \in L^p(R_+)$ such that

$$\lim_{n \to +\infty} \|f * \Lambda_n^{\alpha} - \varphi\|_{L^p(R_+)} = 0,$$

then the function $\varphi \equiv D^{(\alpha)}f$ is called the modified strong dyadic derivative (MSDD) of order α of the function f in the space $L^p(R_+)$.

THEOREM 6.9 Let $f \in L^p(R_+)$, $g \in L^q(R_+)$, $\frac{1}{p} + \frac{1}{q} = 1$, $1 \le p < \infty$ and for some $\alpha > 0$ the MSDD $D^{\alpha}f$ and $D^{\alpha}(g)$ exist in the spaces $L^p(R_+)$ and $L^q(R_+)$ respectively. Then the equality

$$\int_{R_{+}} D^{\alpha} f(x)g(x)dx = \int_{R_{+}} f(x)D^{\alpha}g(x)dx$$

Fractional Dyadic Integration and Differentiation of an Integral by a Parameter

is valid.

Lemma 6.3 For $\alpha > 0$ and $n \in \mathbb{Z}$, the function

$$W_n^{\alpha}(x) \equiv \lim_{m \to \infty} \int_{2^{-n}}^{2^m} \psi(x, y) (h(y))^{\alpha} dy$$

at each point x > 0 is well defined, $W_n^{\alpha} \in L(R_+)$ and $W_n^{\alpha}(x) = 0$ for $x \ge 2^n$. (See [20] or [10], Ch. 3).

Using this lemma we can introduce the following definition.

DEFINITION 6.8 Let $\alpha > 0$, $f, g \in L^p(R_+)$, $1 \le p \le \infty$, and

$$\lim_{n \to +\infty} \|f * W_n^{\alpha} - g\|_{L^p(R_+)} = 0.$$

Then, the function $g \equiv J_{\alpha}f$ is called the modified strong dyadic integral (MSDI) of order α of the function f in the space $L^p(R_+)$.

THEOREM 6.10 Let $f \in L^p(R_+)$, $g \in L^q(R_+)$ $\frac{1}{p} + \frac{1}{q} = 1$, $1 \le p < \infty$, $1 \le q > \infty$, and for some $\alpha > 1$, the MSDI $J_{\alpha}f$ and $J_{\alpha}g$ exist in the spaces $L^p(R_+)$ and $L^q(R_+)$ respectively. Then the equality

$$\int_{R_{+}} J_{\alpha}f(x)g(x)dx = \int_{R_{+}} f(x)J_{\alpha}g(x)dx$$

holds.

An analog of this theorem is valid also for the Wagner strong dyadic integrals.

THEOREM 6.11 Let $f \in L^p(R_+)$, $g \in L(R_+)$, $frac1p + \frac{1}{q} = 1$, $1 \le p < \infty$, $1 \le q < \infty$, and for some $\alpha > 0$ the WSDI $I_{\{\alpha\}}f$ and $I_{\{\alpha\}}g$ exist in the spaces $L^p(R_+)$ and $L^q(R_+)$ respectively. Then, the equality

$$\int_{R_{+}} I_{\{\alpha\}} f(x)g(x)dx = \int_{R_{+}} f(x)I_{\{\alpha\}} g(x)dx$$

holds.

5. Fractional Dyadic Integration and Differentiation of an Integral by a Parameter

Let us remind that according to the Lemma 6.2 for $\alpha>0$ and $n\in Z_+$ the inclusion

$$\Lambda_n^{\alpha} \in L(R_+) \cap L^{\infty}(R_+)$$

is valid. Thus, we can introduce the following definition.

DEFINITION 6.9 Let $\alpha > 0$ and for the function $f \in L(R_+) \cup L^{\infty}(R_+)$ there exists finite limit

$$d^{(\alpha)}(f)(x) = \lim_{n \to +\infty} (f * \Lambda_n^{\alpha})(x)$$

at the point $x \in R_+$.

Then the number $d^{(\alpha)}(f)(x) = (f)(x)$ is called the modified dyadic derivative (MDD) of order α of the function f at the point x.

Let us introduce the notation

$$d_n^{(\alpha)}f(x) = (f * \Lambda_n^{\alpha})(x),$$

where $n \in Z_+$, $\alpha > 0$. Then the existence of MDD $d^{(\alpha)}f(x)$ of the function $f \in L(R_+) \cup L^{\infty}(R_+)$ at the point $x \in R_+$ can be written in the form

$$\lim_{n \to +\infty} d_n^{(\alpha)} f(x) = d^{(\alpha)} f(x).$$

Below for the function of two variables f(x,t) the notation $d^{(\alpha)}f(x_0,t)$ denotes the MDD of order α at the point $x_0 \in R_+$ by the first argument.

Let us consider the problem of dyadic differentiation of the integral

$$F(x) = \int_{E} f(x,t)dt,$$
(6.16)

where E is a Lebesgue measurable set from R^m , $m \in N$ and $x \in R_+$.

Theorem 6.12 Let the Lebesgue measurable function $f: R_+ \times E \to R$ has a majorant $\varphi \in L(E)$ such that $|f(x,t)| \leq \varphi(t)$ for all $x \in R_+$ and almost all $t \in E$. We also assume that there exists the MDD $d^{(\alpha)}f(x_0,t)$ at the point $x_0 \in R_+$ for almost all $t \in E$ and some $\alpha > 0$. Moreover, let the integral $\int_E d^{(\alpha)}f(x_0,t)dt$ converges and the sequence $d_n^{(\alpha)}f(x_0,t)$ has an integrable majorant on the set E. Then, the function (6.16) has the MDD of order α at the point x_0 and the equality

$$d^{(\alpha)}F(x_0) = \int_E d^{(\alpha)}f(x_0, t)dt$$

is valid.

COROLLARY 6.4 Let $\alpha > 0$, $\varphi \in L(R_+)$, and $h^{-\alpha}\varphi \in L(R)$. Then the Walsh-Fourier transform $\tilde{\varphi}$ of the function φ has the MDD $d^{(\alpha)}(\tilde{\varphi})(x)$ of order α at each point $x \in R_+$ and the equality

$$d^{(\alpha)}(\tilde{\varphi})(x) = \tilde{(h^{-\alpha}\varphi)}(x)$$

holds.

The proof of this corollary is based on the Theorem 6.12 and the following lemma.

LEMMA 6.4 The generalized Walsh function $\psi(\circ, y) \equiv \psi_y(\circ)$ has the MDD of order $\alpha > 0$ at each point $x \in R_+$. Moreover, $d^{(\alpha)}(\psi_0)(x) \equiv 0$ on R_+ and for y > 0 the equality

$$d^{(\alpha)}(\psi_y)(x) \equiv (h(y))^{-\alpha}\psi_y(x)$$

is valid (see [10], Ch. 3).

Let us note that the Lemma 6.4 was proved at first in our paper [20] and J. Pal [21] proved a similar result for pointwise derivative of first order of Butzer-Wagner type.

Now we consider the problem of fractional dyadic integration of the function (6.16). Taking into account the Lemma 6.3 we introduce the following definition.

DEFINITION 6.10 Let $\alpha > 0$ and for the function $f \in L^{\infty}(R_+)$ there exists the finite limit

$$j_{\alpha}(f)(x) = \lim_{n \to +\infty} (f * W_n^{\alpha})(x)$$

at the point x. Then the number $j_{\alpha}(f)(x)$ is called the modified dyadic integral (MDI) of order α of the function f at the point x.

For the function $f \in L^{\infty}(R_+)$ we set

$$j_n^{(\alpha)}f(x) = (f * W_n^{\alpha})(x)$$

where $n \in Z_+$, $\alpha > 0$. Then the existence of the MDI $j_n^{\alpha} f(x)$ for the function $f \in L^{\infty}(R_+)$ at the point $x \in R_+$ can be written in the form $\lim_{n \to +\infty} j_n^{(\alpha)} f(x) = j_{\alpha} f(x)$.

Below for the function of two variables f(x,t) the symbol $j_{\alpha}f(x_0,t)$ denotes the MDI of order α at the point $x_0 \in R_+$ by the first argument.

Theorem 6.13 Let the Lebesgue measurable function $f: R_+ \times E \to R$ has a majorant $\varphi \in L(E)$ such that $|f(x,t)| \leq \varphi(t)$ for all $x \in R_+$ and almost all $t \in E$. We also assume that there exists the MDI $j_{\alpha}f(x_0,t)$ at the point $x_0 \in R_+$ for almost all $t \in E$ and some $\alpha > 0$. Moreover, let the integral $\int_E j_{\alpha}f(x_0,t)dt$ converges and the sequence $j_n^{(\alpha)}f(x_0,t)$ has an

integrable majorant on the set E. Then, the function (6.16) has the MDI of order α at the point x_0 and the equality

$$j_{\alpha}F(x_0) = \int_E j_{\alpha}f(x_0, t)dt,$$

is valid.

COROLLARY 6.5 Let $\alpha > 0$, $\varphi \in L(R_+)$ and $h^{\alpha}\varphi \in L(R_+)$. Then, the Walsh-Fourier transform $\tilde{\varphi}$ of the function φ has the MDI $j_{\alpha}(\tilde{\varphi})(x)$ of order α at each point x and the equality

$$j_{\alpha}(\tilde{\varphi})(x) = (h^{\tilde{\alpha}}\varphi)(x)$$

holds.

The proof of this corollary is based on the Theorem 6.13 and the following lemma.

LEMMA 6.5 The generalized Walsh function $\psi(x,y) \equiv \psi_y(x)$ has the MDI of order $\alpha > 0$ at each point $x \in R_+$. Moreover, $j_{\alpha}(\psi_0)(x) \equiv 0$ on R_+ and for y > 0, the equality

$$j_{\alpha}(\psi_y)(x) \equiv (h(y))^{\alpha} \psi_y(x)$$

is valid (see [20] or [10], Ch. 3).

Let us set

$$t_n^{(\alpha)}f(x_0,y) \equiv (T_n^{(\alpha)} * f(\circ,y))(x_0),$$

where the kernel $T_n^{(\alpha)}$ was introduced in (6.12).

Theorem 6.14 Let the Lebesgue measurable function $f:[0,1)\times E\to R$ has a majorant $\varphi\in L(E)$ such that $|f(x,y)|\leq \varphi$ for all $x\in [0,1)$ and almost all $y\in E$. We also assume that there exists the MDD $t^{(\alpha)}f(x_0,y)$ for some $\alpha>0$ (or the MDI $t^{(\alpha)}f(x_0,y)$ for some $\alpha<0$) at the point $x_0\in [0,1)$ for almost all $y\in E$. Moreover, let the integral $\int_E t^{(\alpha)}f(x_0,y)dy$ converges and the sequence $t_n^{(\alpha)}f(x_0,y)$ has an integrable majorant on the set E. Then, the function (6.16) has the DD $t^{(\alpha)}F(x_0)$ of order $\alpha>0$ (or the DI $t^{(\alpha)}F(x_0)$ of order $(-\alpha)$) at the point x_0 and the equality

$$t^{(\alpha)}F(x_0) = \int_E t^{8\alpha} f(x_0, y) dy$$

is valid.

Using the kernel $W_n^{\{\alpha\}}(x)$ defined in Lemma 6.1, we introduce the following definition.

Definition 6.11 If $\alpha > 0$ and there exists the finite limit

$$i_{\{\alpha\}}(f)(x) = \lim_{n \to +\infty} (f * W_n^{\{\alpha\}})(x)$$

for the function $f \in L^{\infty}(R_{+})$ at the point $x \in R_{+}$, then the number $i_{\{\alpha\}}(f)(x)$ is called the Butzer-Wagner dyadic integral (BWDI) of order α of the function f at the point x.

Let us set

$$i_n^{\{\alpha\}} f(x,t) = \int_{R_+} f(y,t) W_n^{\{\alpha\}} (x \oplus y) dy, \quad x \in R_+, t \in E.$$
 (6.17)

Theorem 6.15 Let the Lebesgue measurable function $f: R_+ \times E \to R$ has a majorant $\varphi \in L(E)$ such that $|f(x,t)| \leq \varphi(t)$ for all $x \in R_+$ and $t \in E$. We also assume that there exists BWDI $i_{\{\alpha\}}f(x_0,t)$ at the point $x_0 \in R_+$ for almost all $t \in E$ and some $\alpha > 0$. Moreover, let the integral $\int_E i_{\{\alpha\}}f(x_0,t)dt$ converges and the sequence $i_n^{\{\alpha\}}f(x_0,t)$ has an integrable majorant on the set E. Then, the function (6.16) has the BWDI $i_{\{\alpha\}}F(x_0)$ of order α at the point x_0 and the equality

$$i_{\{\alpha\}}F(x_0) = \int_E i_{\{\alpha\}}f(x_0, t)dt$$

is valid.

Now let us consider the problem of modified strong dyadic differentiation and integration of the function (6.16). We will use the notation

$$d_n^{\alpha} f(x,t) = \int_{R_+} f(y,t) \Lambda_n^{\alpha}(x \oplus y) dy, \quad x \in R_+, t \in E, \alpha > 0.$$

Theorem 6.16 Let the measurable function $f: R_+ \times E \to R$ is such that

$$\int_{R_{+}} \left\{ \int_{E} |f(x,t)| dt \right\} dx < \infty, \tag{6.18}$$

and there exists the MSDD $D^{\alpha}f(x,t)$ by the parameter x in the space $L(R_{+})$ for almost all $t \in E$ and some $\alpha > 0$. Moreover, let

$$\lim_{n \to \infty} \int_E \|d_n^{\alpha} f(\circ, t) - D^{\alpha} f(\circ, t)\|_{L(R_+)} dt = 0.$$

Then the function (6.16) has the MSDD $D^{\alpha}F$ of order α in the space $L(R_+)$ and

$$D^{\alpha}F(\circ) = \int_{E} D^{\alpha}f(\circ,t)dt.$$

Let us introduce the notation

$$j_n^{\alpha} f(x,t) = \int_{R_+} f(y,t) W_n^{\alpha}(x \oplus y) dy, \quad x \in R_+, t \in E.$$

THEOREM 6.17 Let the measurable function $f: R_+ \times E \to R$ satisfies the condition (6.18). Moreover, let the function f(x,t) has MSDI $J_{\alpha}f(\circ,t)$ of some order $\alpha > 0$ in the space $L(R_+)$ for almost all $t \in E$ and

$$\lim_{n \to \infty} \int_E \|j_n^{\alpha} f(\circ, t) - J_{\alpha} f(\circ, t)\|_{L(R_+)} dt = 0.$$

Then the function (6.16) has MSDI $J_{\alpha}F$ of order α in the space $L(R_{+})$ and

$$J_{\alpha}f(\circ) = \int_{E} J_{\alpha}f(\circ, t)dt.$$

The similar result is valid also for the Wagner strong dyadic integral.

THEOREM 6.18 Let the measurable function $f: R_+ \times E \to R$ satisfies the condition (6.18). Moreover, let the function f(x,t) has the WSDI $I_{\{\alpha\}}f(\circ,t)$ of some order $\alpha>0$ in the space $L(R_+)$ for almost all $t\in E$ and

$$\lim_{n \to \infty} \int_E \|i_n^{\{\alpha\}} f(\circ, t) - I_{\{\alpha\}} f(\circ, t)\|_{L(R_+)} dt = 0.$$

where $i_n^{\{\alpha\}}f(x,t)$ is defined in (6.17). Then the function (6.16) has the WSDI $I_{\{\alpha\}}F$ of order α in the space $L(R_+)$ and the equality

$$I_{\{\alpha\}}F(\circ) = \int_E I_{\{\alpha\}}f(\circ,t)dt$$

holds.

Let us introduce the notation $t_r^{(\alpha)}f(\circ,t)=T_r^{(\alpha)}*f(\circ,t)$, where the kernel $T_r^{(\alpha)}$ is defined by the equality (6.12).

Theorem 6.19 Let the measurable function $f: R_+ \times E \to R$ satisfies the condition

$$\int_{[0,1)} \left\{ |f(x,t)| dt \right\} dx < \infty.$$

Moreover, let the function f(x,t) has the SDD $T^{(\alpha)}f(\circ,t)$ of some order $\alpha > 0$ (or it has the SDI $T^{(\alpha)}f(\circ,t)$ if $\alpha < 0$) for almost all $t \in E$ and

$$\lim_{n\to\infty} \int_E \|t_n^{\alpha} f(\circ,t) - T^{(\alpha)} f(\circ,t)\|_{L[0,1)} dt = 0.$$

Then the function (6.16) has the SDD $T^{(\alpha)}F$, if $\alpha > 0$ (or it has the SDI $T^{(\alpha)}F$, if $\alpha < 0$) in the space L[0,1) and the equality

$$T^{(\alpha)}F(\circ) = \int_E T^{(\alpha)}f(\circ,t)dt$$

is valid.

References

- [1] P.L. Butzer, H.J. Wagner, "Walsh series and the concept of a derivative", *Applicable Anal.*, 3 (1973), 29-46.
- [2] P.L. Butzer, H.J. Wagner, "A calculus for Walsh functions defined on R_+ , *Proc. Symp. Applications of Walsh Functions*, Washington, D.C., April 18-20, 1973, 75-81.
- [3] H.J. Wagner, "On dyadic calculus for functions defined on R_+ , *Proc. Symp. Theory and Applications of Walsh Functions*, Hatfield Polytechnic, 1975, 101-129.
- [4] P.L. Butzer, H.J. Wagner, "On dyadic analysis based on pointwise dyadic derivative", *Analysis Math.*, 1 (1975), 171-196.
- [5] C.W. Onneweer, "Differentiation on *p*-adic or *p*-series field", In the book: *Linear Spaces and Approximation*, Intern. Ser. Numer. Math. Vol. 40. Basel: Birkhuser, 1978, 187-198.
- [6] C.W. Onneweer, "On the definition of dyadic differentiation", *Applicable Anal.*, 9 (1979), 267-278.
- [7] C.W. Onneweer, "Fractional differentiation on the group of integers of a *p*-adic or *p*-series field", *Analysis Math.*, 3 (1977), 119-130.
- [8] He Zelin, "The derivatives and integrals of fractional order in Walsh-Fourier analysis with applications to approximation theory", *J. Approx. Theory*, 39 (1983), 361-373.
- [9] F. Schipp, W.R. Wade, P. Simon, *Walsh Series. An Introduction to Dyadic Harmonic Analysis*, Akademiai Kiado, Budapest, 1990.
- [10] B.I. Golubov, *Elements of Dyadic Analysis* URSS Publ., Moscow, 2007, (in Russian).
- [11] B. Golubov, A. Efimov, V. Skvortsov, *Walsh Series and Transforms, The-ory and Applications*, Nauka Publishers, Moscow, 1987, (in Russian).

- [12] B.I. Golubov, "Fractional modified dyadic integral and derivative on R_+ ", Funct. Anal. and Appl., 39 (2005), 64-70.
- [13] C.W. Onneweer, "Fractional derivatives and Lipschitz spaces on local fields", *Trans. Amer. Math. Soc.*, 258 (1980), 923-931.
- [14] N.J. Fine, "The generalized Walsh functions", *Trans. Amer. Math. Soc.*, 69 (1950), 66-77.
- [15] S. Saks, *Theory of the Integral*, Inostrannaya Literatura, Moscow, Russia, 1949, (in Russian. Transl. from English).
- [16] I.P. Natanson, *Theory of Functions of a Real Variable*, Nauka, Moscow, 1974, (in Russian).
- [17] F. Schipp, "Uber einen Ableitungsbegriff von P.L. Butzer und H.J. Wagner", *Math. Balcanica*, 4 (1974), 541-546.
- [18] H.J. Wagner, "Ein Differential- und Integralkalkül in der Walsh-Fourier Analysis mit Anwendungen", Westdeutscher Verlag (Köln Opladen, 1974).
- [19] J. Pal, F. Schipp, "On the a.e. dyadic differentiability of dyadic integral on R_+ , *Proc. First Intern. Workshop on Gibbs Derivatives*, Math. Inst., Beograd, 1989, 103-113.
- [20] B.I. Golubov, "Dyadic fractional differentiation and integration of Walsh transform", *Proc. Intern. Conf. Mathematics and its Applications*, Kuwait, 2005, 274-284.
- [21] J. Pal, "On the connection between the concept of a derivative defined on the dyadic field and the Walsh Fourier transform", *Annales Sci. Univ. Budapest. Sect. Math.*, **18** (1975), 49-54.