Chapter 10

DISCRETE-TYPE RIESZ PRODUCTS

Costas Karanikas

Department of Informatics, Aristotle University of Thessaloniki, 54-124 Thessaloniki, Greece karanika@csd.auth.gr

Nikolaos D. Atreas

Department of Informatics, Aristotle University of Thessaloniki, 54-124 Thessaloniki, Greece natreas@csd.auth.gr

Abstract

We factorize finite data of length m, or step functions determined on the intervals $[k/m,(k+1)/m), k=0,\ldots,m-1$ of [0,1), by writting them as a discrete Riesz-type Product $t_n=\prod_{k=1}^m(1+a_kh_{k,n})$ with respect to the rows h_k of a matrix H(m) of order $m\times m$ and associated to a sequence of coefficients $\{a_k:k=1,\ldots,m\}$. We give sufficient conditions on H(m) and $\{a_k\}$, providing invertibility of the underlying non-linear Riesz-type transform and we present examples of classes of acceptable matrices.

1. Introduction

The original Riesz's construction associated to a sequence of coefficients $\{a_n\}$, was to show that there exists a continuous function F of bounded variation in $[0,2\pi)$, whose Fourier-Stieltjes coefficients do not vanish at infinity, F being the pointwise limit of the sequence of functions:

$$F_N(x) = \int_0^x \prod_{n=1}^N (1 + a_n \cos(2\pi 4^n t)) dt.$$

Over the years, Riesz's construction was generalized, by replacing the generating function $cos(2\pi t)$ with other generating functions such as the Rademacher, or Walsh functions, or trigonometric polynomials (see [4], [6], [6]). Recently

in [3], multiscale Riesz Products have been constructed, based on a real valued function H on [0,1), called generating function and a dilation operator $T:[0,1)\to [0,1)$, such that:

$$\mu_m(\gamma) = \prod_{n=1}^m (1 + a_n H(T^{n-1}\gamma))$$

converges weak-* to a bounded measure as $m \to \infty$. Obviously, we can generalize the definition of μ_m , by considering partial Riesz Products of the form:

$$\mu_m(\gamma) = \prod_{n=1}^m (1 + a_n H_n(\gamma)),$$
 (10.1)

where $H_n(\gamma), (n=1,\ldots,m)$ are bounded functions on [0,1). Clearly, if we denote by V_m the space of sequences of length m and by B[0,1) the space of bounded functions on [0,1), the partial Riesz Products (10.1) induce a nonlinear transform $\mu_m: V_m \to B[0,1)$, such that for every $a=\{a_1,\ldots,a_m\} \in V_m$ we have:

$$\mu_m(a)(\gamma) = \prod_{n=1}^m (1 + a_n H_n(\gamma)).$$

In order to achieve invertibility for μ_m , in [2] and [3] we considered step functions H_n on the intervals $\Omega_{n,m} = \left[\frac{n-1}{m}, \frac{n}{m}\right), \ n=1,\ldots,m$:

$$H_n(\gamma) = \sum_{i=0}^m h_{n,i} \mathbf{1}_{\Omega_{i,m}}(\gamma).$$

As a consequence, we dealt with discrete Riesz-type products of the form:

$$t_n = \prod_{k=1}^{m} (1 + a_k h_{k,n}). \tag{10.2}$$

We proved the following:

THEOREM 10.1 (see [3])

Let $H(m)=\{h_{k,n}: k,n=1,\ldots,m\}$ be a real orthonormal matrix whose first row is the constant row $(\frac{1}{\sqrt{m}},\ldots,\frac{1}{\sqrt{m}})$ and all rows satisfy

$$h_n h_l = h_{n,l_0} h_l \quad \text{whenever } n < l \tag{10.3}$$

where h_n , h_l are rows of H(m) and h_{n,l_0} is the first non-zero entry of the l-row of the matrix H(m). If $t = \{t_1, \ldots, t_m\}$ is a sequence of real numbers such that

$$\langle t, h_i \rangle \neq 0, \ i = 1, \dots, m,$$

where <, > is the usual inner product of \mathbb{R}^m , then there is a unique sequence of coefficients $\{a_k : k = 1, ..., m\}$ such that:

$$t_n = \prod_{k=1}^{m} (1 + a_k h_{k,n}). \tag{10.4}$$

Moreover, the coefficients $\{a_n : n = 1, ..., m\}$ are computed via the following:

$$a_n = \begin{cases} \langle t, h_1 \rangle - \sqrt{m} & n = 1\\ \frac{\langle t, h_n \rangle}{\prod_{k=1}^{n-1} (1 + a_k h_{k, n_0})}, & n = 2, \dots, m \end{cases},$$

where h_{n,n_0} is the first non-zero entry of the row h_n .

Also, we constructed a class of unbalanced Haar matrices H(m) satisfying (10.3) of Theorem 10.1. An example is shown below:

$$H(3) = \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\sqrt{\frac{2}{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \end{pmatrix},$$

$$H(6) = \begin{pmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ \frac{1}{2\sqrt{3}} & \frac{1}{2\sqrt{3}} & \frac{1}{2\sqrt{3}} & \frac{1}{2\sqrt{3}} & -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & 0 & 0 \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}.$$

In this paper, we relax the conditions imposed on the matrix H(m) in Theorem 10.1. In Section 2, we see that Theorem 10.1 is true, if orthonormality is replaced by invertibility. Also, we show that for a particular class of exponential matrices we can drop (10.3) and Theorem10.1 is valid, as long as the values of the coefficients $\{a_k\}$ are restricted to the discrete set $A=\{0,1\}$.

2. Discrete Riesz Products

In this section we obtain classes of matrices, whose corresponding Riesz Products give rise to an invertible non-linear transform.

PROPOSITION 10.1 Let $H(m) = \{h_{k,n} : k, n = 1, ..., m\}$ be a real invertible matrix satisfying (10.3) of Theorem 10.1. If $t = \{t_1, ..., t_m\}$ is a sequence of real numbers such that

$$\langle t, h_i \rangle \neq 0, \ i = 1, ..., m,$$

then there is a unique sequence of coefficients $\{a_k : k = 1, ..., m\}$ such that:

$$t_n = \prod_{k=1}^{m} (1 + a_k h_{k,n}).$$

Moreover, the coefficients $\{a_n : n = 1, ..., m\}$ are computed via the following:

$$a_n = \begin{cases} \langle t, h_{\cdot,1}^{-1} \rangle - \langle 1, h_{\cdot,1}^{-1} \rangle & n = 1\\ \frac{\langle t, h_{\cdot,n}^{-1} \rangle}{\prod_{k=1}^{n-1} (1 + a_k h_{k,n_0})}, & n = 2, \dots, m \end{cases},$$

where $H^{-1}(m) = [h_{j,k}^{-1}]$ is the inverse matrix of H(m).

Proof. We expand the discrete Riesz Product and we use (10.3) to get:

$$t_n = 1 + \sum_{k=1}^m a_k h_{k,n} + \sum_{k_1=1}^{m-1} \sum_{k_2=k_1+1}^m a_{k_1} a_{k_2} h_{k_1,k_2^0} h_{k_2,n} + \dots + (a_1 \dots a_m) \left(\prod_{j=1}^{m-1} h_{k_j,k_m^0} \right) h_{m,n},$$

where h_{k_j,k_m^0} is the first non-zero entry of the row h_{k_j} .

The invertibility of H(m) and (10.4) imply that $\left\langle t, h_{\cdot,1}^{-1} \right\rangle = \left\langle 1, h_{\cdot,1}^{-1} \right\rangle + a_1$. For any s>1 we have:

$$\langle t, h_{\cdot,s}^{-1} \rangle = a_s \left(1 + \sum_{k_1=1}^{s-1} a_{k_1} h_{k_1,s_0} + \sum_{k_1=1}^{m-2} \sum_{k_2=k_1+1}^{m-1} a_{k_1} a_{k_2} \left(\prod_{j=1}^2 h_{k_j,s_0} \right) + \dots + (a_1 \dots a_{s-1}) \left(\prod_{j=1}^{s-1} h_{k_j,s_0} \right) \right)$$

$$= a_s \prod_{k=1}^{s-1} \left(1 + a_k h_{k,s_0} \right).$$

Example 10.1 A class of matrices H(m) satisfying Proposition 10.1 is produced by the following rules:

- (a) The first row of H(m) is the constant row $\{1, \ldots, 1\}$.
- (b) Every other row has only two non-zero entries 0 or 1.

(c) If we denote by $supp\{h_k\} = \{j \in \{1, ..., m\} : h_{kj} \neq 0\}$, then: $supp\{h_k\} \cap supp\{h_l\} = \emptyset \text{ or } supp\{h_k\} \cap supp\{h_l\} = supp\{h_l\}$ whenever k < l.

Below, we present examples of matrices satisfying rules (a)-(c):

$$H(3) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix},$$

$$H(6) = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \end{pmatrix}.$$

PROPOSITION 10.2 Let $\Theta(m) = \{\theta_{n,j} : |\theta_{n,j}| < \pi, \ n, j = 1, ..., m\}$ be an invertible matrix whose columns satisfy the following:

$$-\pi \le \sum_{n=1}^{m} \theta_{n,j} \le \pi, \ j = 1, ..., m.$$

If $t = \{t_j = |t_j|e^{i\arg(t_j)}, j = 1,...,m\} - \pi \le arg(z) \le \pi$ is a sequence of complex numbers, then there is a unique sequence of boolean coefficients $\{a_n : n = 1,...,m\}$, such that:

$$t_j = \prod_{n=1}^{m} (1 + a_n e^{i\theta_{n,j}}).$$

Moreover, the coefficients $\{a_n : n = 1, ..., m\}$ are computed via the following matrix equation:

$$a = 2\Theta^{-1}C(t),$$

where $a = [a_n]$ and $C(t) = [\arg(t_n)]$ are column matrices of order $m \times 1$.

Proof. Let $t_j = \prod_{n=1}^m (1 + a_n e^{i\theta_{n,j}})$, where $a_n \in \{0,1\}$, then we have:

$$t_j = \prod_{n=1}^m (1 + a_n e^{i\theta_{n,j}}) = \prod_{n=1}^m (1 + e^{i\theta_{n,j}})^{a_n}.$$

Since

$$\overline{t_j} = \prod_{n=1}^{m} (1 + e^{-i\theta_{n,j}})^{a_n} = \prod_{n=1}^{m} \left(e^{-i\theta_{n,j}} \left(e^{i\theta_{n,j}} + 1 \right) \right)^{a_n}$$

$$= \prod_{n=1}^{m} \left(e^{-ia_n \theta_{n,j}} \left(1 + e^{i\theta_{n,j}} \right)^{a_n} \right) = t_j e^{-i \sum_{n=1}^{m} a_n \theta_{n,j}},$$

we get:

$$e^{-i\arg(t_j)} = e^{i\arg(t_j)}e^{-i\sum_{n=1}^m a_n\theta_{n,j}}.$$

thus:

$$\sum_{n=1}^{m} a_n \theta_{n,j} = 2 \arg(t_j) + 2\lambda_j \pi, \lambda \in \mathbf{Z}.$$

The hypothesis $-\pi \leq \sum_{n=1}^m \theta_{n,j} \leq \pi$ indicates that $\lambda_j = 0$ for every j and the result follows as a consequence of the invertibility of the matrix Θ .

Example 10.2 (Haar-type unbalanced matrices)

Since Haar type unbalanced matrices H(m) as defined in [3] have rows with zero mean, except for the first row which is the constant row $(\frac{1}{\sqrt{p^m}}, \dots, \frac{1}{\sqrt{p^m}})$, orthogonal matrices of the form

$$\Theta(m) = \frac{\pi}{\sqrt{p^m}} H(m)$$

satisfy Proposition 10.2. We present below two examples:

$$\Theta(3) = \frac{\pi}{\sqrt{3}} \begin{pmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & -\sqrt{\frac{2}{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 \end{pmatrix},$$

$$H(6) = \frac{\pi}{\sqrt{6}} \begin{pmatrix} \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\ \frac{1}{2\sqrt{3}} & \frac{1}{2\sqrt{3}} & \frac{1}{2\sqrt{3}} & \frac{1}{2\sqrt{3}} & -\frac{1}{\sqrt{3}} & -\frac{1}{\sqrt{3}} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & 0 & 0 \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \end{pmatrix}.$$

Example 10.3 (Generalized Walsh-type Riesz Products)

Since Walsh orthogonal matrices $W(2^k)$, $k = 1, ..., produced from the Walsh system <math>\{w_0, ..., w_{2^k}\}$ defined in [6] have rows with zero mean, except for the first row which is the constant row (1, ..., 1), orthogonal matrices of the form

$$\Theta(2^k) = \frac{\pi}{2^k} W(2^k)$$

Discrete Riesz Products 143

satisfy Proposition 10.2. We present below two examples:

Acknowledgments

Research supported by the Joint Research Project within the Bilateral S&T Cooperation between the Hellenic Republic and the Republic of Bulgaria (2004-2006).

References

- [1] N. Atreas and C. Karanikas, "Haar-type orthonormal systems, data presentation as Riesz Products and a recognition on symbolic sequences", *Proceedings of the Special Session on Frames and Operator Theory in Analysis and Signal Processing*, to appear in *Contemp. Math.*, Vol. 451 (2008).
- [2] N. Atreas and C. Karanikas, "Multiscale Haar unitary matrices with the corresponding Riesz Products and a characterization of Cantor type languages", *Fourier Anal. Appl.*, 13, 2, (2007), 197-210.
- [3] Benedetto J. J., Bernstein E., and Konstantinidis I., "Multiscale Riesz Products and their support properties", *Acta Applicandae Mathematicae*, 88, (2005), 201-227.
- [4] Bisbas A. and Karanikas C., "On the Hausdorff dimension of Rademacher Riesz products", *Monat. Fur Math.*, 110, (1990), 15-21.
- [5] Golubov B., Efimov A. and Skvortsov V., Walsh Series and Transforms. Theory and Applications, Kluwer Academic Publishers, New York, (1991).
- [6] Peyriere J., "Sur le produits de Riesz", C. R. Acad. Sci. Paris Ser. A-B 276, (1973), A1417-A1419.