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Abstract We factorize finite data of length m, or step functions determined on the intervals
[k/m, (k + 1)/m), k = 0, . . . , m − 1 of [0, 1), by writting them as a discrete
Riesz-type Product tn =

Qm
k=1(1 + akhk,n) with respect to the rows hk of a

matrix H(m) of order m×m and associated to a sequence of coefficients {ak :
k = 1, . . . , m}. We give sufficient conditions on H(m) and {ak}, providing
invertibility of the underlying non-linear Riesz-type transform and we present
examples of classes of acceptable matrices.

1. Introduction
The original Riesz’s construction associated to a sequence of coefficients

{an}, was to show that there exists a continuous function F of bounded varia-
tion in [0, 2π), whose Fourier-Stieltjes coefficients do not vanish at infinity, F
being the pointwise limit of the sequence of functions:

FN (x) =
∫ x

0

N∏

n=1

(1 + an cos(2π4nt))dt.

Over the years, Riesz’s construction was generalized, by replacing the generat-
ing function cos(2πt) with other generating functions such as the Rademacher,
or Walsh functions, or trigonometric polynomials (see [4], [6], [6]). Recently
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in [3], multiscale Riesz Products have been constructed, based on a real val-
ued function H on [0, 1), called generating function and a dilation operator
T : [0, 1) → [0, 1), such that:

µm(γ) =
m∏

n=1

(1 + anH(Tn−1γ))

converges weak-∗ to a bounded measure as m → ∞. Obviously, we can
generalize the definition of µm, by considering partial Riesz Products of the
form:

µm(γ) =
m∏

n=1

(1 + anHn(γ)), (10.1)

where Hn(γ), (n = 1, . . . , m) are bounded functions on [0, 1). Clearly, if we
denote by Vm the space of sequences of length m and by B[0, 1) the space of
bounded functions on [0, 1), the partial Riesz Products (10.1) induce a non-
linear transform µm : Vm → B[0, 1), such that for every a = {a1, . . . , am} ∈
Vm we have:

µm(a)(γ) =
m∏

n=1

(1 + anHn(γ)).

In order to achieve invertibility for µm, in [2] and [3] we considered step
functions Hn on the intervals Ωn,m =

[
n−1
m , n

m

)
, n = 1, . . . , m:

Hn(γ) =
m∑

i=0

hn,i1Ωi,m(γ).

As a consequence, we dealt with discrete Riesz-type products of the form:

tn =
m∏

k=1

(1 + akhk,n). (10.2)

We proved the following:

Theorem 10.1 (see [3])
Let H(m) = {hk,n : k, n = 1, . . . , m} be a real orthonormal matrix whose

first row is the constant row ( 1√
m

, . . . , 1√
m

) and all rows satisfy

hnhl = hn,l0hl whenever n < l (10.3)

where hn, hl are rows of H(m) and hn,l0 is the first non-zero entry of the l-row
of the matrix H(m). If t = {t1, . . . , tm} is a sequence of real numbers such
that

〈t, hi〉 6= 0, i = 1, . . . , m,
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where <,> is the usual inner product of Rm, then there is a unique sequence
of coefficients {ak : k = 1, . . . , m} such that:

tn =
m∏

k=1

(1 + akhk,n). (10.4)

Moreover, the coefficients {an : n = 1, . . . , m} are computed via the fol-
lowing:

an =

{ 〈t, h1〉 −
√

m n = 1
〈t,hn〉Qn−1

k=1(1+akhk,n0)
, n = 2, . . . , m ,

where hn,n0 is the first non-zero entry of the row hn.
Also, we constructed a class of unbalanced Haar matrices H(m) satisfying

(10.3) of Theorem 10.1. An example is shown below:

H(3) =




1√
3

1√
3

1√
3

1√
6

1√
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−
√
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1√
2

− 1√
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0


 ,

H(6) =



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


.

In this paper, we relax the conditions imposed on the matrix H(m) in The-
orem 10.1. In Section 2, we see that Theorem 10.1 is true, if orthonormality
is replaced by invertibility. Also, we show that for a particular class of expo-
nential matrices we can drop (10.3) and Theorem10.1 is valid, as long as the
values of the coefficients {ak} are restricted to the discrete set A = {0, 1}.

2. Discrete Riesz Products
In this section we obtain classes of matrices, whose corresponding Riesz

Products give rise to an invertible non-linear transform.

Proposition 10.1 Let H(m) = {hk,n : k, n = 1, . . . , m} be a real invert-
ible matrix satisfying (10.3) of Theorem 10.1. If t = {t1, . . . , tm} is a sequence
of real numbers such that

〈t, hi〉 6= 0, i = 1, ..., m,
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then there is a unique sequence of coefficients {ak : k = 1, . . . , m} such that:

tn =
m∏

k=1

(1 + akhk,n).

Moreover, the coefficients {an : n = 1, . . . , m} are computed via the follow-
ing:

an =




〈t, h−1

·,1 〉 − 〈1, h−1
·,1 〉 n = 1

〈t,h−1
·,n〉Qn−1

k=1(1+akhk,n0)
, n = 2, . . . , m

,

where H−1(m) = [h−1
j,k ] is the inverse matrix of H(m).

Proof. We expand the discrete Riesz Product and we use (10.3) to get:

tn = 1 +
m∑

k=1

akhk,n +
m−1∑

k1=1

m∑

k2=k1+1

ak1ak2hk1,k0
2
hk2,n + . . .

+ (a1 . . . am)




m−1∏

j=1

hkj ,k0
m


hm,n,

where hkj ,k0
m

is the first non-zero entry of the row hkj .

The invertibility of H(m) and (10.4) imply that
〈
t, h−1

·,1
〉

=
〈
1, h−1

·,1
〉

+a1.

For any s > 1 we have:

〈
t, h−1

·,s
〉

= as


1 +

s−1∑

k1=1

ak1hk1,s0 +
m−2∑

k1=1

m−1∑

k2=k1+1

ak1ak2




2∏

j=1

hkj ,s0




+ . . . + (a1 . . . as−1)




s−1∏

j=1

hkj ,s0







= as

s−1∏

k=1

(1 + akhk,s0) .

Example 10.1 A class of matrices H(m) satisfying Proposition 10.1 is pro-
duced by the following rules:

(a) The first row of H(m) is the constant row {1, . . . , 1}.

(b) Every other row has only two non-zero entries 0 or 1.
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(c) If we denote by supp{hk} = {j ∈ {1, . . . , m} : hkj 6= 0}, then:

supp{hk} ∩ supp{hl} = ® or supp{hk} ∩ supp{hl} = supp{hl}
whenever k < l.

Below, we present examples of matrices satisfying rules (a)-(c):

H(3) =




1 1 1
1 0 0
0 1 0


 ,

H(6) =




1 1 1 1 1 1
1 1 0 0 0 0
0 0 1 1 0 0
1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0




.

Proposition 10.2 Let Θ(m) = {θn,j : |θn,j | < π, n, j = 1, . . . , m} be an
invertible matrix whose columns satisfy the following:

−π ≤
m∑

n=1

θn,j ≤ π, j = 1, ...,m.

If t = {tj = |tj |ei arg(tj), j = 1, ...,m} −π ≤ arg(z) ≤ π is a sequence
of complex numbers, then there is a unique sequence of boolean coefficients
{an : n = 1, . . . , m}, such that:

tj =
m∏

n=1

(1 + aneiθn,j ).

Moreover, the coefficients {an : n = 1, . . . ,m} are computed via the following
matrix equation:

a = 2Θ−1C(t),

where a = [an] and C(t) = [arg(tn)] are column matrices of order m× 1.

Proof. Let tj =
∏m

n=1(1 + aneiθn,j ), where an ∈ {0, 1}, then we have:

tj =
m∏

n=1

(1 + aneiθn,j ) =
m∏

n=1

(1 + eiθn,j )an .

Since

tj =
m∏

n=1

(1 + e−iθn,j )an =
m∏

n=1

(
e−iθn,j

(
eiθn,j + 1

))an
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=
m∏

n=1

(
e−ianθn,j

(
1 + eiθn,j

)an
)

= tje
−i
Pm

n=1 anθn,j ,

we get:

e−i arg(tj) = ei arg(tj)e−i
Pm

n=1 anθn,j ,

thus:
m∑

n=1

anθn,j = 2arg(tj) + 2λjπ, λ ∈ Z.

The hypothesis −π ≤ ∑m
n=1 θn,j ≤ π indicates that λj = 0 for every j and

the result follows as a consequence of the invertibility of the matrix Θ.

Example 10.2 (Haar-type unbalanced matrices)
Since Haar type unbalanced matrices H(m) as defined in [3] have rows with

zero mean, except for the first row which is the constant row ( 1√
pm , . . . , 1√

pm ),
orthogonal matrices of the form

Θ(m) =
π√
pm

H(m)

satisfy Proposition 10.2. We present below two examples:

Θ(3) =
π√
3



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
 ,

H(6) =
π√
6



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

.

Example 10.3 (Generalized Walsh-type Riesz Products)
Since Walsh orthogonal matrices W (2k), k = 1, . . . , produced from the Walsh
system {w0, . . . , w2k} defined in [6] have rows with zero mean, except for the
first row which is the constant row (1, . . . , 1), orthogonal matrices of the form

Θ(2k) =
π

2k
W (2k)
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satisfy Proposition 10.2. We present below two examples:

Θ(2) =
π

2

(
1 1
1 −1

)
,

Θ(4) =
π

4




1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1


 , ....
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