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Abstract We factorize finite data of length m, or step functions determined on the intervals
[k/m,(k+1)/m),k =0,...,m —1o0f [0,1), by writting them as a discrete
Riesz-type Product ¢, = [];-, (1 + arhe,n) with respect to the rows hy of a
matrix H (m) of order m x m and associated to a sequence of coefficients {ax :
k =1,...,m}. We give sufficient conditions on H(m) and {a}, providing
invertibility of the underlying non-linear Riesz-type transform and we present
examples of classes of acceptable matrices.

1. Introduction

The original Riesz’s construction associated to a sequence of coefficients
{ay}, was to show that there exists a continuous function F' of bounded varia-
tion in [0, 27), whose Fourier-Stieltjes coefficients do not vanish at infinity, F
being the pointwise limit of the sequence of functions:

z N
Fy(z) = /0 T (1 + an cos(2ramt))dt.

n=1

Over the years, Riesz’s construction was generalized, by replacing the generat-
ing function cos(2nt) with other generating functions such as the Rademacher,
or Walsh functions, or trigonometric polynomials (see [4], [6], [6]). Recently
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in [3], multiscale Riesz Products have been constructed, based on a real val-
ued function H on [0, 1), called generating function and a dilation operator
T:]0,1) — [0,1), such that:

m

pm () = H(l + anH(Tnilfy))

n=1

converges weak-* to a bounded measure as m — oo. Obviously, we can
generalize the definition of u,,, by considering partial Riesz Products of the

form:
m

i (1) = [[ (L + anHa(7), (10.1)
n=1
where H,(7v),(n = 1,...,m) are bounded functions on [0, 1). Clearly, if we

denote by V,,, the space of sequences of length m and by BJ0, 1) the space of
bounded functions on [0, 1), the partial Riesz Products (10.1) induce a non-
linear transform iy, : V;,, — B0, 1), such that for every a = {a1,...,an} €
V,» we have:

(@) = [[ (1 + anHu (7).
n=1

In order to achieve invertibility for u,,, in [2] and [3] we considered step

functions H,, on the intervals €2, ,, = [”;Ll, %) ,n=1,...,m:

Hy(y) = hnila,,, (7).
=0

As a consequence, we dealt with discrete Riesz-type products of the form:

m

tn = [0+ arhen). (10.2)
k=1
We proved the following:
THEOREM 10.1 (see [3])
Let H(m) = {hiy : k,n = 1,...,m} be a real orthonormal matrix whose
first row is the constant row (\/%, e ﬁ) and all rows satisfy
hnhy = hy,hi whenever n < (10.3)
where hy,, hy are rows of H(m) and hy, ;, is the first non-zero entry of the l-row
of the matrix H(m). Ift = {t1,...,ty} is a sequence of real numbers such
that

(t,hy) #0, i=1,...,m,
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where <, > is the usual inner product of R™, then there is a unique sequence

of coefficients {ay, : k = 1,...,m} such that:
m
tn = [[(1+ arhrn). (10.4)
k=1
Moreover, the coefficients {a,, : n = 1,...,m} are computed via the fol-
lowing:
{ (t,h1) — /m n=1
an = (t7hn> — 9
T (Ltarhong)’ n=2,...,m

where hy, 5, is the first non-zero entry of the row hy,.

Also, we constructed a class of unbalanced Haar matrices H (m) satisfying
(10.3) of Theorem 10.1. An example is shown below:

1 1 1
Vi Vi 3
H(B) = % % _% ’
B 0
Vi Ve
1 1 1 1 1 1
G L GG B |
SOk O I B
HE) = | L 2 ¢ ¢ o o
vi v 00
0 0 gk 00
o 0o 0 o L 1

In this paper, we relax the conditions imposed on the matrix H (m) in The-
orem 10.1. In Section 2, we see that Theorem 10.1 is true, if orthonormality
is replaced by invertibility. Also, we show that for a particular class of expo-
nential matrices we can drop (10.3) and Theorem10.1 is valid, as long as the
values of the coefficients {ay} are restricted to the discrete set A = {0, 1}.

2. Discrete Riesz Products

In this section we obtain classes of matrices, whose corresponding Riesz
Products give rise to an invertible non-linear transform.

PROPOSITION 10.1 Let H(m) = {hy,, : k,n =1,...,m} be a real invert-

ible matrix satisfying (10.3) of Theorem 10.1. Ift = {t1, ..., t,,} is a sequence
of real numbers such that

(t,hi) #0, i=1,...,m,



140 Discrete-type Riesz Products

then there is a unique sequence of coefficients {ay : k = 1,...,m} such that:

m
H 1 + akhk n
k=1

Moreover, the coefficients {a,, : n = 1,...,m} are computed via the follow-
ing:
(t, h:11> — (1, h:11> n=1
an = (t.hn)
[Tzt (T+arhing )’

where H=1(m) = [h;,i] is the inverse matrix of H(m).

n=2,...,m "’

Proof. We expand the discrete Riesz Product and we use (10.3) to get:

t, = 1+ Zakhkn + Z Z aklak2hk1 kOth?” +.

k1=1ko=k1+1
m—1
taran (T o )
Jj=1

where hy, o is the first non-zero entry of the row hy;.
The invertibility of H (m) and (10.4) imply that <t, hj11> - <1, hj11> ta.
For any s > 1 we have:

s—1 m—2 2
<t, h:81> = ags |1+ Z gy Mgy 50 + Z Z Ay Ay HthﬁO
J=1

k1=1 k1=1 ko=k1+1

—l—...—‘r( L Qg 1 HhkmSO

s—1

= a, H (1 + aghi,s) -

k=1

ExXAMPLE 10.1 A class of matrices H(m) satisfying Proposition 10.1 is pro-
duced by the following rules:

(a) The first row of H(m) is the constant row {1,...,1}.

(b) Every other row has only two non-zero entries 0 or 1.
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(c) If we denote by supp{hy} = {j € {1,...,m} : hy; # 0}, then:

supp{hi} N supp{hi} = @ or supp{hy} 0\ supp{h;} = supp{h;}
whenever k < I.

Below, we present examples of matrices satisfying rules (a)-(c):

111

HB3) = [ 10 0],
010
111111
110000
001100

HE) = 119000 0
001000
000010

PROPOSITION 10.2 Let ©(m) = {0, : |0, ;| <7, n,j=1,...,m} bean
invertible matrix whose columns satisfy the following:

m
-1 < ZH"J <m j=1..,m

n=1
Ift = {t; = |tjle’*s®) j = 1,...m} —n < arg(z) < 7 is a sequence

of complex numbers, then there is a unique sequence of boolean coefficients
{an :n=1,...,m}, such that:

m
tj = H(l + apeifni).
n=1
Moreover, the coefficients {a,, : n = 1,...,m} are computed via the following
matrix equation:
a=2071C(t),

where a = [a,] and C(t) = [arg(t,,)] are column matrices of order m x 1.

Proof. Let t; = [, (1 + a,e'®), where a,, € {0, 1}, then we have:

m m
ti= [J( +ane®) = [T +e)m
n=1 n=1

Since
m

Zn 4 n 71977, an
(14 e ") H dJ e 41

n=1 n=1
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m
X . an . ‘
— H (eﬂanan,j (1 + e”w’) ) =tje" > et anbn,j

n=1
we get:
—iarg(t;) iarg(t;) ,—ty ', anbn
€ =e€ e n=1 7,

thus:
m
Za,ﬂn’j = 2arg(t;) + 2 7, A € Z.
n=1

The hypothesis —7 < "™ , 6, ; < 7 indicates that A\; = 0 for every j and
the result follows as a consequence of the invertibility of the matrix O.

EXAMPLE 10.2 (Haar-type unbalanced matrices)
Since Haar type unbalanced matrices H(m) as defined in [3] have rows with

zero mean, except for the first row which is the constant row (\/%, e \/%),
orthogonal matrices of the form
s
O(m) = —=H(m)
pm

1 1 1
- V3 V3 V3
_ 1 1 _./2
vz v 0
1 1 1 1 1 1
AR R R R B |
23 23 23 23 V3 3B
1 1 L 1 0 0
H(6) = T ) 2, 2 2
NG N 0 0 0 0
1 1
0 0 N (1) 01
0 0 0 0 NG

EXAMPLE 10.3 (Generalized Walsh-type Riesz Products)

Since Walsh orthogonal matrices W (2F), k = 1, ..., produced from the Walsh
system {wo, ..., wqr } defined in [6] have rows with zero mean, except for the
first row which is the constant row (1, ..., 1), orthogonal matrices of the form

s

02k = o

W (2F)
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satisfy Proposition 10.2. We present below two examples:

o - 3(1 4 ).

1 1 1 1
[ 1 1 -1 -1

o@W = 111 4 7 |-
1 -1 -1 1
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