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Abstract This paper presents some results on the convergence of the Walsh-Fourier series
for the functions of countably many variables.

1. Introduction and Background Work

Let T° and [0, 1]°° are the Cartesian product of countably many of one-
dimensional tori T = R/Z:

T ={z = (x1,...,2pn,...): 0< 2, < 1,n € N}
and the Cartesian product of countably many segments [0, 1], respectively.

The torus T and the cube [0, 1]°° are equipped with the Tychonoff topol-
0gy.

The Lebesque measure is defined on T°° and on [0, 1]* as on the product
of the spaces with one-dimensional Lebesque measure. Hence it is possible to
consider L and other spaces on T and on [0, 1]*°.

H. Steinhaus (1930) translated a probability result of A.N. Kolmogorov into
terms of the theory of functions:

O .
A trigonometric series of the form ", a,e?™ @+ converges (diverges) almost
k=1

o0 o0
everywhere on T if 3 |az|? < 0o (Y |ax)? = o0).
k=1 k=1

The system of functions

p
Ony,...n, (T) = H eminrer € Nyn, € Zyx = (x1,...,%p,...) € T®

r=1

is called the Jessen system.
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The Jessen system is a complete orthonormal system on T°.

B. Jessen (1934) [1] obtained the representation of an integrable function as
a limit of integrals.

Let us denote by T" the n-dimensional torus:

T ={(z1,...,2p): 0< 2 <1, k=1,2,...,n},
and by T"™®° the infinite dimensional torus:
T = {(zpn41,.- -, Tngp,---) 1 0< a2, <1, k=n+1,...,n+p,...}.
Let us denote by [0, 1]™° the infinite dimensional cube
[0,1]"° = {(Zpt1,-- s Tpgps--): 0< 2 <1, k=n+1,...n+p,...},

[0, 1]™ — n-dimensional cube.
B. Jessen [1] proved the following

THEOREM 14.1 Let f € L(T). Then the sequence of functions

fu(z) = / f(x)dzpyr ... depqp..., n € N.
T,
converges a.e. on T to f, that is

lim f@)dzpyr .. . depgy ... = f(z), ae xeT™.
n—oo
Tn,00
If f € LP(T°),p > 1, then f, € LP(T) and sequence { f,,} converges to f
in LP(T*).

Of course, Jessen’s theorem is correct for functions f € L([0, 1]°°) and

fn(x) :/ flx)depsir.. . depsp..., neN. (14.1)
[071]7%00

This Jessen’s theorem allows to solve some questions on Fourier series of
functions on T and [0, 1]°°.

Let us remark that T.I. Ahobadze (1986) considered systems of functions on
T°° and in particular the Jessen system.

2. Series in Terms of Infinite Dimensional Walsh System

We will consider Walsh system on [0, 1]°:

p
Wiy, (2) = Hwn,,(a:r),p eN,n, €Z,x=(x1,...,2p,...) €[0,1]%,

r=1
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where Z, = N U {0} and w,, (z,) are one-dimensional Walsh functions.

This system is a complete orthonormal system on [0, 1]*°.

F. Schipp [2] considered generalized product systems and obtained results
on L? - norm convergence (1 < p < oo) of Fourier expansions with respect
to the product system of independent systems and with respect to Vilenkin
systems.

Let Z <*° be the set of infinite dimensional vectors n = (n1,...,np,...)
with n, € Z and only a finite number of n,, are different from zero.

We will consider series on infinite dimensional Walsh system

Z anWy(x), where z € [0,1]*, a,, € R. (14.2)
TLGZ+<O°
If forn = (n1,...,np,...) € Zy<>° the coordinates n, = 0 for k > p,

then we’ll use the following notations for a,: ap, = an,,. n,. Each of these
notation determines n and a,, uniquely.
Denote the rectangular partial sums by

N1 Np
SNty (T) = D> gy Wiy (71) Wy (zp),  (14.3)
n1=0 np=0
where p € N, Ny,...,N, € Zy, z € [0,1]*. If Ny = ... = N, these are

cubic partial sums.

We say that the series (14.2) converges rectangularly at the point z € [0, 1]*°
to the number s if for any € > 0 there exists an index P such that for any
p > P we can find a natural number N such that for any Nq,..., N, > N the
inequality Sy v, ... N, () — 5| < ¢ is fulfilled.

The series (14.2) is called convergent over cubes if we consider only cubic
partial sums in this definition.

We say that the series (14.2) converges rectangularly (over cubes) in strength-
ened sense at the point z € [0,1]* to the number s if for any p multi-

ple Walsh series > an,,....n,Wn, (1) . .. Wy, (z,) converges rectangularly
N1,..Np
(over cubes) at the point x and there exist limit

It is easy to see if the series (14.2) converges in the strengthened sense, then
it converges.

F. Méricz [3] proved that if f € L%([0, 1]?), then the square partial sums of
the Walsh-Fourier series of f converge to f almost everywhere on [0, 1]2. This
result is correctly and in d-dimensional case. It follows from this and from
Jessen’s theorem A
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THEOREM 14.2 If f € L%(]0,1]%), then the Fourier series of f converges
over cubes in strengthened sense to f a.e. on [0, 1]

Let ¢: [0,400) — [0,400) be an increasing function. Then we denote
by ¢ L)([ ] ) the set of all measurable functions f on [0, 1]°° such that
f o(|f(z)])dx < oo. Similarly, ¢(L)([0,1]™) is the set of all measurable

functlons fon[0,1]", suchthat [ (| f(z)])dz;...dz, < .
[0,1]™

LEMMA 14.1 Let ¢: [0,+00) — [0, +00) be an increasing convex function.

If f € p(L)(]0,1]°), then f,, (n € N) (see (14.1)) are from o(L)([0,1]™). If
we consider fy, as functions on [0, 1], then f, € ¢(L)([0,1]*°), n € N.

Proof. Recall the Jensen inequality in general form. Let p be probability
measure on measurable space (X, A), g — p-integrable function with values in
the domain of definition of convex function ¢ and ¥ ( f) is integrable function.

Then,
o /X o(2)uldz)) < /X B () u(de).

We have in our case X = [0, 1]*°, 1 — Lebesque measure, g = |fy|, ¢ = 1.
It follows from increasing of function ¢ and from Jensen’s inequality that

Alfal@)) < o /[0 e s )
< / S(1f(@)]) dpsr - drp
[071}11,00
Now we obtain by integrating this inequality on [0, 1]™

/ so<|fn<x>|>dx1...dmng/ (1 () de < oo,
[0,1]" [0,1]%°

Lemma is proven.

It is known and follows from the Jessen-Marcinkiewich-Zygmund theo-
rem on the strong differentiation of integrals [4], Ch. XVII, paragraph 2,
and from the form of partial sums of multiple Fourier-Haar series that if f €
L(log™* L)?=1([0, 1]%), then rectangular partial sums of the Haar-Fourier series
of f converge to f almost everywhere on [0, 1]%.

For Walsh-Fourier series we obtain by this and by Lemma and Theorem A
the following
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THEOREM 14.3 If f € 52, L(logt L)4(T), then the rectangular partial
sums Sony ona  onp Of the Walsh-Fourier series of f converges in strengthened
sense to f a.e. on [0, 1]>°.

REMARK 14.1 The condition f € (32, L(log™ L)4([0,1]°°) may be given

in the equivalent form: there exist an increasing function h(x) defined on
[0,00), h(x) >0, lim h(x) = 400 such that
Tr—0Q0

[ 1#@l0og" 1£@)) Do < oc.
[0,1]>
REMARK 14.2 It follows from S. Saks [4], Ch. XVII, paragraph 2, and T.S.

Zerekidze [5] results that any class L(log™ L)%([0,1]>) contains a function
for which the Theorem 14.3 is not correct.

REMARK 14.3 It follows from results by D.K. Sanadze and Sh.V. Kheladze
[6] that under conditions of Theorem 14.3 the rectangular partial sums of the
Walsh-Fourier series of f converge to f a.e. on [0,1]° if all but one indices
are lacunary.

Let us compare the Theorem 14.3 with the result for the Jessen system

THEOREM 14.4 If f € N, L(log™ L)¥(T°), then the trigonometric Fourier
series of f converges over cubes in the strengthened sense to f a.e. on T,

(The proof of Theorem 14.4 can be found in [7].)

REMARK 14.4 It follows from Konyagin’s result [8] that any class L(log™ L)%(T>)
contains a function with the Fourier series divergent over cubes everywhere on
Te°.

F. Weisz proved (see in [9] the 2-dimensional case) that if f € L[0, 1]™ and

k—1 k—1
Sk‘,...,k(f: r) = Z S Z amy,...,;myn Wmy (1) - W, (T0)
m1=0 m1=0

are cubic partial sums of Fourier series of f (k = 1,2,3,...), then

lim St1,..1(f,x) + 82 o(f,x) + ...+ Sk, k(f, )

h—00 2 = f(z) ae.on][0,1]".

From this and from Theorem 14.1 we obtain:
If f € L([0,1]°) and Sy, ... i;(f, x) cubic partial sums of f (see (3)) then

Sn,.1(f,2) + Sna. . 2(fix) + . 4+ Sppk(frz)
’ = f(z)

lim lim
n—oo k—oo

a.e. on [0, 1]*.
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