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Abstract This paper presents some results on the convergence of the Walsh-Fourier series
for the functions of countably many variables.

1. Introduction and Background Work
Let T∞ and [0, 1]∞ are the Cartesian product of countably many of one-

dimensional tori T = R/Z:

T∞ = {x = (x1, . . . , xn, . . .) : 0 ≤ xn < 1, n ∈ N}
and the Cartesian product of countably many segments [0, 1], respectively.

The torus T∞ and the cube [0, 1]∞ are equipped with the Tychonoff topol-
ogy.

The Lebesque measure is defined on T∞ and on [0, 1]∞ as on the product
of the spaces with one-dimensional Lebesque measure. Hence it is possible to
consider Lp and other spaces on T∞ and on [0, 1]∞.

H. Steinhaus (1930) translated a probability result of A.N. Kolmogorov into
terms of the theory of functions:

A trigonometric series of the form
∞∑

k=1

ake
2πixk converges (diverges) almost

everywhere on T∞ if
∞∑

k=1

|ak|2 < ∞ (
∞∑

k=1

|ak|2 = ∞).

The system of functions

θn1,...,np(x) =
p∏

r=1

e2πinrxr , p ∈ N, nr ∈ Z, x = (x1, . . . , xp, . . .) ∈ T∞

is called the Jessen system.
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The Jessen system is a complete orthonormal system on T∞.
B. Jessen (1934) [1] obtained the representation of an integrable function as

a limit of integrals.
Let us denote by Tn the n-dimensional torus:

Tn = {(x1, . . . , xn) : 0 ≤ xk < 1, k = 1, 2, . . . , n},
and by Tn,∞ the infinite dimensional torus:

Tn,∞ = {(xn+1, . . . , xn+p, . . .) : 0 ≤ xk < 1, k = n + 1, . . . , n + p, . . .}.
Let us denote by [0, 1]n,∞ the infinite dimensional cube

[0, 1]n,∞ = {(xn+1, . . . , xn+p, . . .) : 0 ≤ xk ≤ 1, k = n+1, . . . n+p, . . .},
[0, 1]n — n-dimensional cube.

B. Jessen [1] proved the following

Theorem 14.1 Let f ∈ L(T∞). Then the sequence of functions

fn(x) =
∫

Tn,∞

f(x)dxn+1 . . . dxn+p . . . , n ∈ N.

converges a.e. on T∞ to f , that is

lim
n→∞

∫

Tn,∞

f(x)dxn+1 . . . dxn+p . . . = f(x), a.e. x ∈ T∞.

If f ∈ Lp(T∞), p ≥ 1, then fn ∈ Lp(T∞) and sequence {fn} converges to f
in Lp(T∞).

Of course, Jessen’s theorem is correct for functions f ∈ L([0, 1]∞) and

fn(x) =
∫

[0,1]n,∞
f(x) dxn+1 . . . dxn+p . . . , n ∈ N. (14.1)

This Jessen’s theorem allows to solve some questions on Fourier series of
functions on T∞ and [0, 1]∞.

Let us remark that T.I. Ahobadze (1986) considered systems of functions on
T∞ and in particular the Jessen system.

2. Series in Terms of Infinite Dimensional Walsh System
We will consider Walsh system on [0, 1]∞:

Wn1,...,np(x) =
p∏

r=1

wnr(xr), p ∈ N, nr ∈ Z+, x = (x1, . . . , xp, . . .) ∈ [0, 1]∞,
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where Z+ = N ∪ {0} and wnr(xr) are one-dimensional Walsh functions.
This system is a complete orthonormal system on [0, 1]∞.
F. Schipp [2] considered generalized product systems and obtained results

on Lp - norm convergence (1 < p < ∞) of Fourier expansions with respect
to the product system of independent systems and with respect to Vilenkin
systems.

Let Z+
<∞ be the set of infinite dimensional vectors n = (n1, . . . , np, . . .)

with np ∈ Z+ and only a finite number of np are different from zero.
We will consider series on infinite dimensional Walsh system

∑

n∈Z+
<∞

anWn(x), where x ∈ [0, 1]∞, an ∈ R. (14.2)

If for n = (n1, . . . , np, . . .) ∈ Z+
<∞ the coordinates nk = 0 for k > p,

then we’ll use the following notations for an: an = an1,...,np . Each of these
notation determines n and an uniquely.

Denote the rectangular partial sums by

Sp,N1,...,Np(x) =
N1∑

n1=0

. . .

Np∑

np=0

an1,...,npwn1(x1) . . . wnp(xp), (14.3)

where p ∈ N, N1, . . . , Np ∈ Z+, x ∈ [0, 1]∞. If N1 = . . . = Np these are
cubic partial sums.

We say that the series (14.2) converges rectangularly at the point x ∈ [0, 1]∞
to the number s if for any ε > 0 there exists an index P such that for any
p ≥ P we can find a natural number N such that for any N1, . . . , Np ≥ N the
inequality |Sp,N1,...,Np(x)− s| < ε is fulfilled.

The series (14.2) is called convergent over cubes if we consider only cubic
partial sums in this definition.

We say that the series (14.2) converges rectangularly (over cubes) in strength-
ened sense at the point x ∈ [0, 1]∞ to the number s if for any p multi-
ple Walsh series

∑
n1,...np

an1,...,npwn1(x1) . . . wnp(xp) converges rectangularly

(over cubes) at the point x and there exist limit

lim
p→∞

∑
n1,...,np

an1,...,npwn1(x1) . . . wnp(xp) = s.

It is easy to see if the series (14.2) converges in the strengthened sense, then
it converges.

F. Móricz [3] proved that if f ∈ L2([0, 1]2), then the square partial sums of
the Walsh-Fourier series of f converge to f almost everywhere on [0, 1]2. This
result is correctly and in d-dimensional case. It follows from this and from
Jessen’s theorem A
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Theorem 14.2 If f ∈ L2([0, 1]∞), then the Fourier series of f converges
over cubes in strengthened sense to f a.e. on [0, 1]∞.

Let ϕ : [0, +∞) → [0, +∞) be an increasing function. Then we denote
by ϕ(L)([0, 1]∞) the set of all measurable functions f on [0, 1]∞ such that∫
[0,1]∞

ϕ(|f(x)|)dx < ∞. Similarly, ϕ(L)([0, 1]n) is the set of all measurable

functions f on [0, 1]n, such that
∫

[0,1]n
ϕ(|f(x)|) dx1 . . . dxn < ∞.

Lemma 14.1 Let ϕ : [0, +∞) → [0, +∞) be an increasing convex function.
If f ∈ ϕ(L)([0, 1]∞), then fn (n ∈ N) (see (14.1)) are from ϕ(L)([0, 1]n). If
we consider fn as functions on [0, 1]∞, then fn ∈ ϕ(L)([0, 1]∞), n ∈ N.

Proof. Recall the Jensen inequality in general form. Let µ be probability
measure on measurable space (X,A), g — µ-integrable function with values in
the domain of definition of convex function ψ and ψ(f) is integrable function.
Then,

ψ(
∫

X
g(x)µ(dx)) ≤

∫

X
ψ(f(x))µ(dx).

We have in our case X = [0, 1]∞, µ — Lebesque measure, g = |fn|, ϕ = ψ.
It follows from increasing of function ϕ and from Jensen’s inequality that

ϕ(|fn(x)|) ≤ ϕ(
∫

[0,1]n,∞
|f(x)| dxn+1 . . . dxn+p . . .)

≤
∫

[0,1]n,∞
ϕ(|f(x)|) dxn+1 . . . dxn+p . . . .

Now we obtain by integrating this inequality on [0, 1]n

∫

[0,1]n
ϕ(|fn(x)|) dx1 . . . dxn ≤

∫

[0,1]∞
ϕ(|f(x)|) dx < ∞.

Lemma is proven.
It is known and follows from the Jessen-Marcinkiewich-Zygmund theo-

rem on the strong differentiation of integrals [4], Ch. XVII, paragraph 2,
and from the form of partial sums of multiple Fourier-Haar series that if f ∈
L(log+ L)d−1([0, 1]d), then rectangular partial sums of the Haar-Fourier series
of f converge to f almost everywhere on [0, 1]d.

For Walsh-Fourier series we obtain by this and by Lemma and Theorem A
the following
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Theorem 14.3 If f ∈ ⋂∞
d=1 L(log+ L)d(T∞), then the rectangular partial

sums S2n1 ,2n2 ,...,2np of the Walsh-Fourier series of f converges in strengthened
sense to f a.e. on [0, 1]∞.

Remark 14.1 The condition f ∈ ⋂∞
d=1 L(log+ L)d([0, 1]∞) may be given

in the equivalent form: there exist an increasing function h(x) defined on
[0,∞), h(x) ≥ 0, lim

x→∞h(x) = +∞ such that
∫

[0,1]∞

|f(x)|(log+ |f(x)|)h(|f(x)|)dx < ∞.

Remark 14.2 It follows from S. Saks [4], Ch. XVII, paragraph 2, and T.S.
Zerekidze [5] results that any class L(log+ L)d([0, 1]∞) contains a function
for which the Theorem 14.3 is not correct.

Remark 14.3 It follows from results by D.K. Sanadze and Sh.V. Kheladze
[6] that under conditions of Theorem 14.3 the rectangular partial sums of the
Walsh-Fourier series of f converge to f a.e. on [0, 1]∞ if all but one indices
are lacunary.

Let us compare the Theorem 14.3 with the result for the Jessen system

Theorem 14.4 If f ∈ ⋂∞
d=1 L(log+ L)d(T∞), then the trigonometric Fourier

series of f converges over cubes in the strengthened sense to f a.e. on T∞.

(The proof of Theorem 14.4 can be found in [7].)

Remark 14.4 It follows from Konyagin’s result [8] that any class L(log+ L)d(T∞)
contains a function with the Fourier series divergent over cubes everywhere on
T∞.

F. Weisz proved (see in [9] the 2-dimensional case) that if f ∈ L[0, 1]n and

Sk,...,k(f, x) =
k−1∑

m1=0

. . .
k−1∑

m1=0

am1,...,mnwm1(x1) . . . wmn(xn)

are cubic partial sums of Fourier series of f (k = 1, 2, 3, . . .), then

lim
k→∞

S1,...,1(f, x) + S2,...,2(f, x) + . . . + Sk,...,k(f, x)
k

= f(x) a.e. on [0, 1]n.

From this and from Theorem 14.1 we obtain:
If f ∈ L([0, 1]∞) and Sn,k,...,k(f, x) cubic partial sums of f (see (3)) then

lim
n→∞ lim

k→∞
Sn,1,...,1(f, x) + Sn,2,...,2(f, x) + . . . + Sn,k,...,k(f, x)

k
= f(x)

a.e. on [0, 1]∞.
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