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Abstract The paper presents a brief overview of applications of Walsh functions in cryp-
tography.

1. Introduction
The theory of Walsh functions goes back to the original paper of Walsh

(1923). This was followed by contributions of Paley, Fine and others in pure
mathematics. After WWII interest in communication engineering and signal
processing arose and research, mainly in the USA-there at Jet Propulsion Labo-
ratory in Pasadena but also at companies and universities was done. From 1970
on regularly conferences first at the Naval Research Laboratory in Washington
D.C., were started, with H. Harmuth (see, for example, [3], [4]) as its main
speaker. It is most likely that at this time the importance of Walsh functions
for the characterization of Boolean function as they are applied in cryptography
was already known to different organizations but was kept confidential. 1

2. Walsh Functions: General overview on the theory
Walsh functions have become important for the analysis of Boolean func-

tions by their application in cryptography in combiners and also in S-boxes.
Their mathematical theory is highly developed. They are character functions
of a specific abelian group, the dyadic group and the related theory is a special

1This paper is a part of a lecture series of the author on Cryptology and is addressed to Non-specialists in the
field of Walsh functions. Additional citations may be found in the LNCS publications of the EUROCRYPT
and CRYPTO Conferences.
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case of the theory characters and of the field of abstract harmonic analysis
(see for example the book of Rudin [8] or Hewitt-Ross [5]). The case we are
dealing with is given by the finite dyadic group D(n) which is the n-fold direct
product of the cyclic group Z2. In this case the theory becomes a part of linear
algebra.

The dyadic group D(n) is defined by D(n) := (Bn,⊕), its elements x =
(x0, x1, . . . , xn−1) are Boolean n-tuples, the addition x⊕ y of the elements x
and y is coordinate-wise done.

A Boolean function f is defined by a function f from Bn to B.
Let Z(n) denote the set Z(n) := {0, 1, . . . , 2n − 1}. There exists a one to

one correspondence between Z(n) and D(n) by the function bin with

bin(x0 + 2x1 + . . . + 2n−1xn−1) := (x0, x1, . . . , xn−1).

For elements t from Z(n) we use often the notation t = (t0, t1, . . . , tn−1)
and extend the xor operation ⊕ also to Z(n).

Walsh functions w(s, ·) are usually defined as real-valued functions w(s, ·) :
Z(n) → R by

w(s, t) = (−1)<s,t>, s ∈ Z(n),

where < s, t > denotes the inner product s0t0 + s1t1 + · · · + sn−1tn−1 of s
with t.

Walsh functions w(s, ·) take only values +1 and −1. The Walsh transform
F̂ of a function F : Z(n) → R is defined by

F̂ (s) :=
∑

t

F (t)w(s, t).

The inverse Walsh transform of F̂ is given by

f(t) =
1
2n

∑
s

F̂ (s)w(s, t).

Let F, G denote functions from Z(n) to R. The dyadic convolution product
F ∗G is defined as the function

(F ∗G)(t) =
∑

a

F (t⊕ a)G(a).

For dyadic convolution the following theorem called the dyadic convolution
theorem is valid

̂(F ∗G) = F̂ · Ĝ.

Notice that for F ∗ G = E (E the function E(0) = 1, E(t) = 0, else) it
follows F = E.
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Notice that for F ∗ G = E (E the function E(0) = 1, E(t) = 0 else) it
follows F = E.

Let Fa denote the a-dyadic shifted function Fa(t) := F (t⊕a). The follow-
ing dyadic shifting theorem is easy to prove

F̂a = w(a, ·)F̂ .

From the formula for the Walsh transform of a function F , we get for F̂ (0)
the value

F̂ (0) =
∑

t

F (t),

and from the formula for the inverse Walsh transform

F (0) =
1
2n

∑
s

F̂ (s).

The dyadic cross correlation function DCC(F, G) of functions F and G is
defined by

DCC(F, G) =
∑

t

F (t⊕ a)G(t).

The dyadic autocorrelation function DAC(F ) of a function F is defined by

DAC(F )(a) =
∑

t

F (t⊕ a)F (t).

For the DAC of a function F the following theorem can be proven

D̂AC(F ) = F 2,

which is a mathematical expression of the Theorem of Wiener-Khintchin.
Of specific interest are functions F which take (as the Walsh functions)

only values +1 and −1 on Z(n). The following theorem characterizes such
functions by spectral properties.

Theorem 13.1 A function F is a "+1/ − 1 function" if and only if the fol-
lowing equation is valid

F̂ ∗ F̂ = 2nE.

An interesting theorem is the following.

Theorem 13.2 (Theorem of Liedl)
Let F be a polynomial of degree m < n. Then, F̂ (s) = 0 for all s with
‖s‖H > m, where ‖s‖H denotes the Hamming weight of s.
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3. Walsh Fourier Analysis of Boolean Functions
Applications of the theory of Walsh functions in the field of cryptology deal

mainly with Boolean functions f : Bn → B. Any such function f has a
corresponding +1/− 1 function F which is given by F (t) = (−1)f(x) where
x = bin(t). In the following, F has always this meaning.

The Walsh transform f̂ of a Boolean function f is defined in the following
way

f̂(y) =
∑

x

(−1)f(x)(−1)<x,y>,

or since f(x)+ < y, x > (mod 2) = f(x)⊕ < y, x > we have also

f̂(y) =
∑

x

(−1)f(x)⊕<x,y>.

It is to observe that the Walsh transform f̂ of a Boolean function f is real-
valued.

The dyadic autocorrelation and the dyadic cross correlation of a Boolean
function f is defined by the DAC and DCC of the associated +1/−1 function
F :

DAC(f) := DAC(F )

and

DCC(f) := DCC(F ).

The following results for Boolean functions f are valid:

DAC(f)(0) = 2n,

and

‖f ⊕ fa‖H = 1/2− 1/2n+1DAC(f)(a).

It can be observed that for a = 0 as expected ‖f ⊕ f‖H = 0. Furthermore
that the Hamming distance of f and fa for a 6= 0 is close to 1

2 if DAC(f)(a)
is small. This is the case for the Boolean functions f : D(2n − 1) → B which
are generated by a maximum length linear feedback shift register MLFSR of
length n (pseudo random code-words).

A main application of the Walsh transform in cryptology is given by the
spectral characterization of Boolean functions.

A Boolean function f on D(n) is called balanced if

card{x : f(x) = 0} = card{x : f(x) = 1} = 2n/2.
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We have the "theorem": A function f is balanced if f̂(0) = 2n/2.
A Boolean function f satisfies by definition the propagation criteria with

respect to a ∈ D(n) if f ⊕ fa is balanced. Here fa denotes the dyadic a-shift
of f which is given by fa(x) := f(x⊕ a).

A Boolean function f satisfies by definition the propagation criteria of de-
gree k if it satisfies the propagation criteria for all a ∈ D(n) with 0 < ‖a‖H =
k. In the case k = 1 we say that f satisfies the Strict Avalanche Criteria (SAC).
The following theorem can be proven for the SAC of a Boolean function f :

Theorem 13.3 ([1]
A Boolean function f satisfies the Strict Avalanche Criteria if

∑
s

(f̂)2(s)(−1)si = 0,

for all i with 1 ≤ i ≤ n.

The distance d(f, g) between two Boolean functions f and g is given by

d(f, g) = ‖f ⊕ g‖H .

Linear Boolean functions l(y) are of the form l(y)(x) =< y, x > or l(y) =
1⊕ < y, x >.

A degree of non-linearity of a Boolean function f can be measured by its
distance to a linear Boolean function. The following theorem allows to express
the distance of a Boolean function f to the linear functions l(y) by means of
its spectrum:

Theorem 13.4 For a Boolean function f and a linear Boolean function l(y)

d(f, l(y)) =
1
2
(2nf̂(y)).

In stream cipher architectures the analysis of the Boolean function which re-
alizes a static combiner is of specific importance. To block correlation attacks
to investigate the used secret key a sufficient degree m of correlation immu-
nity of such a function is required. In this respect the following definition is
introduced:

A Boolean function f is called to be correlation immune of order m if
f(x1, x2, . . . , xn) is statistically independent from every k-tupel, where k <
m + 1, when considered as independent uniformly distributed binary random
variables of stochastic processes Xi1 , Xi2 , . . . , Xin .

For the characterization of a Boolean function with respect to its correlation
immunity the following theorem is of importance.
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Theorem 13.5 ([10])
A Boolean function f is correlation immune of order m if and only if f̂(y) = 0
for all y with ‖y‖H ≤ m, where ‖y‖H denotes the Hamming weight of y.

In the terminology of Walsh-Fourier analysis this means, that a Boolean
function f which is correlation immune of order m contains in its Walsh-
Fourier representation only Walsh functions, which are a product of more than
m Rademacher functions. The related Walsh-Fourier spectrum f̂ can there-
fore be considered as a nonlinear function which compares to polynomials of
higher degree than m.

4. Design of Boolean Function Combiners
The determination of a Boolean function which meets the necessary require-

ments is an important mathematical task in the cryptography of stream ciphers.
We explore in detail the following properties, which have some relevance.

If x1, x2, x3, . . . , xn denotes the pseudo random streams received by the
combiner C, then the resulting output stream y of the considered combiner
C(x1, x2, x3, . . . , xn) should be "cryptologically improved" compared to the
individual input streams xi (i = 1, 2, 3, . . . , n).

A combiner C must not "leak" (should have a strong one way property to
make cryptanaysis difficult).

The design of combiners for strong pseudo random generators used in cryp-
tography is usually a part of a trade secret of companies. However there are
a number of published results which can give an orientation. Most of pub-
lications deal with static combiners, based on Boolean functions, only a few
results are known for dynamic combiner.

A Boolean combiner can be realized by a properly chosen Boolean function
C from Bn to B := {0, 1}. A Boolean combiner can be represented either by
a table or by a Boolean expression. Usually it is to assume that C is given by
its Algebraic Normal Form ANF (C).

One of the most important requirements in the design of Boolean combiners
concerns the degree of correlation immunity I(C) to avoid leaking with respect
to the correlation attack (described by Siegenthaler [9] and Golic [2]) I(C) can
be determined by spectral properties of the Walsh-Fourier transform WFT (C)
of C. A sufficient degree I(C) needs a certain degree of nonlinearity of the
discrete polynomial associated to C. The results, which are already described
in Section 2 were derived by the work of Xiao and Massey [10].

It is possible to construct a sufficiently large number of correlation immune
Boolean functions for any desired degree m [6]. Other results which are de-
rived by Siegenthaler [9] are based on repeated algebraic computations.
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If the required degree I(C) of correlation immunity of a combiner C is
given, then the following recipe for the construction of a combiner C with
degree I(C) = m can be applied:

1 Define C by C(x1, x2, . . . , xn) := x1⊕x2⊕· · ·xm⊕g(xm+1, . . . , xn)
with a Boolean function g : Bn−m → B.

2 Chose g such that the additional required properties of C are fulfilled.

In the following we explore some additional features and their spectral rep-
resentation by Walsh-Fourier representations which are used in combiner de-
sign. In doing this we have to distinguish between static combiners represented
by Boolean functions (Boolean function combiner) and dynamic combiners
(FSM combiners, also called in cryptography "combiners with memory") rep-
resented by finite state machines.

In both cases it is the goal to derive from observed output bits

y(0)y(1)y(2), . . . , y(k), . . .

of the combiner C some knowledge about the input streams x1, x2, . . . , xn and
the "machines" (specifically their initial states) M1, M2, . . . , Mn which gener-
ate it. To get such a useful knowledge for the mounting of an attack this should
be computational hard. In the case of dynamic combiners our consideration is
restricted to finite state machines which are finite memory machines. In this
case the problem of the design of a dynamic combiner can be reduced to the
design of a Boolean function combiner.

Boolean function combiners are designed by switching functions f such that

1 The solution of the system of equations f(x(i)) = y(i), i = 0, 1, 2, . . . , k;
x(i) = (x1(i), x2(i), . . . , xn(i)) is computational hard.

2 A correlation analysis between the output stream y and the individual
input streams xi (i = 1, 2, . . . , n) shows no results regardless of the
length of the applied streams y and xi.

The condition (1) requires the highly nonlinear functions f . In the condition
(2), in contradiction, however, certain linear component of f is required to meet
correlation immunity requirements.

Different ways to represent switching functions f are known:

1 By the disjunctive form DF ,

2 By the conjunctive form CF ,

3 By the algebraic normal form ANF (a multivariate polynomial).
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In cryptanalysis it is for algebraic reasons often desirable to use the ANF
of a Boolean function f which is given by

ANF (f) := a1x1 + a2x2 + · · ·+ anxn + a1,2x1x2 + a1,3x1x3

+ · · ·+ an−1,nxn−1xn + a1,2,3x1x2x3 + a1,2,4x1x2x4

+ · · ·+ a1,2,3,4,...,nx1x2 · · ·xn,

there exist methods to compute DF , CF and ANF from any each other.
In Cryptology the following criteria are considered as useful in the design

and analysis of Boolean combiners and Boolean networks ("S-boxes")

1 Balance,

2 Nonlinear order,

3 Correlation immunity,

4 Bentness,

5 Distance to linear structures,

6 Strict avalanche criterion,

7 Propagation characteristic,

8 Global avalanche criterion.

The criteria (1)-(8) can be defined as shown in the following. Also their
characterization, if possible, in the spectral domain is given:

A Boolean function f is called balanced if

card{x : f(x) = 1} = card{x : f(x) = 0}.

The nonlinear order of f is defined by the maximal numbers of variables
which appear in the ANF (f).

A Boolean function f is correlation-immune of order m if the value of f
is statistically independent from any m-tupel (compare with a more detailed
definition in Section 2 of this paper).

These properties can be characterized by the Walsh-Fourier spectrum f̂ of
f in the following way:

Theorem 13.6 A Boolean function f is balanced iff f̂(0) = 0.

Theorem 13.7 A Boolean function f is correlation immune of order m iff
f̂(w) = 0 for all w with the Hamming weight ‖w‖H ≤ m.
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Theorem 13.8 A Boolean function f is said to satisfy the strict avalanche
criterion (SAC) if

Pr{f(x)⊕ f(x⊕ a) = 1} =
1
2

for ‖a‖ = 1.

Theorem 13.9 A Boolean function f satisfies the propagation characteris-
tic (PC) of degree k if

Pr{f(x)⊕ f(x⊕ a) = 1} =
1
2
,

for 1 ≤ ‖a‖ ≤ k.

Remark 13.1 The perfect nonlinearity requires a PC of degree n.

Theorem 13.10 The global avalanche criterion GAC of a Boolean func-
tion f can be characterized by the dyadic autocorrelation function DAC(f)
of f which is given by

DAC(f) :=
∑

x

F (x)F (x⊕ a).

A "good" GAC means that DAC(f) is close to zero for almost all nonzero
values of a and for a = 0 we should have DAC(f)(0) = 2n. The Walsh-
Fourier transform WFT (DAC(f)) is according to the Wiener-Khintchin the-
orem the Walsh Power Spectrum P (f) of the Boolean function f . For func-
tions f with good GAC the related P (f) is almost constant (has a "white noise"
characteristic).

Bent functions are Boolean functions f which satisfy the propagation char-
acteristic PC by degree n. For bent functions the following theorem is valid.

Theorem 13.11 A Boolean function f is a bent function if the modulus of
f̂ (f̂ the Walsh transform of f ) is constant with f̂(w) = 2n/2 for all w ∈
GF (2)n.

Satisfying the criteria (1)-(8) may lead to conflicts. Such examples are as
follows:

1 Usually it is required that C is balanced, so it cannot be a bent function.

2 Bent functions does not exist if n is odd.

3 High linear order means low degree of correlation immunity.
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To avoid a trade-off of the kind (1) it can be suggested to use static combin-
ers C of the form

C = x1 ⊕ x2 ⊕ x3 ⊕ · · · ⊕ xm ⊕ C ′(xm+1, xm+2, · · · , xn),

which is of the correlation immunity of degree m.
To meet additional criteria the Boolean function C ′ has to be designed ac-

cordingly.

5. Finite Memory FSM Combiners
For special cases of finite state machines the design of dynamic combiners

can be reduced to the design of a static (Boolean) combiner. One class is given
by finite state machines which possess the "finite memory property". Such
finite state machines are called Finite Memory Machines (FMM). This leads to
the concept of a Finite Memory FSM combiner (FMM combiner).

In the following the main results for the design of FMM-combiners are
stated, see [7].

Definition 13.1 A finite state machine FSM has a finite memory of degree i
if any simple experiment (w, v) observed on the FSM determines uniquely the
reached state q as soon as the length of the experiment is equal to i or is larger
than i, length (w, v) = i or length (w, v) > i.

There exist efficient algorithms to determine if a given FSM is a finite mem-
ory machine FMM and also to determine the degree i. If a FSM is a FMM
then there is the possibility to compute the associated canonical shift register
representation, which contains two feed-forward registers for the input and the
output together with the Boolean output function f(FMM).

In a FMM state transition is reduced to simple shift operation.
The following procedure for constructing a FMM combiner is suggested:

1 Feed the input streams x1, x2, . . . , xn to the associated feed-forward
shift register R1, R2, . . . , Rn of lengths m1,m2, . . . , mn.

2 Feed the output stream y to a feed-forward shift register R of length m.

3 Take all register states as inputs of the output function f(FMM).

The resulting FMM has a finite memory of degree

i = max(m1,m2, . . . ,mn,m).

The following steps can use the methods for the cryptographic design of
the Boolean function f(FMM) with the cryptanalytic methods known for
Boolean function combiners. To camouflage the design the change of the
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state coordinates of the FMM is recommended to change by state assignment
the states such that the FMM canonical form disappears so that, after imple-
mentation, it is not immediately recognized as a FMM combiner on hardware
blueprints.
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