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Abstract Generalized integrals with respect to multidimensional dyadic basis are consid-
ered and applied to recover coefficients of multiple series in Haar and Walsh
systems on [0, 1]™ and on group G™

1. Introduction

In this paper we survey some results related to the problem of recovering
the coefficients of multiple Walsh and Haar series. Generalized integrals which
solve this problem are defined in terms of the dyadic derivation basis.

It is known that similarly to the case of series in trigonometrical system
(see [17]), Walsh and Haar series being convergent everywhere can fail to be
the Fourier-Lebesgue series of their sums. Therefore the coefficients problem
requires integration processes more general than the Lebesgue one.

A history of this theory, especially in the one-dimensional case, was pre-
sented in [14].
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We concentrate here on the multidimensional case. In this case a solution
of the coefficients problem essentially depends on the type of convergence of
multiple series, on the set of convergence and also on the domain on which
Walsh system is defined (on the dyadic group or on the unit interval in R™ ).

A version of multidimensional Perron integral solving the coefficients prob-
lem for rectangular convergent multiple Haar and Walsh series in R™ was
considered in [13]. We discuss this case of convergence in more details in Sec-
tion 5, both in group and in R™ setting. The coefficient problem in the case
of a more general p-regular rectangular convergence was considered in several
paper by the first author. These results are surveyed in Section 6.

2. Henstock- and Perron-type Integrals with Respect to a
Derivation Basis

We remind the principal elements of the Henstock theory of integration (see
[3D).

A derivation basis (or simply a basis) B in a measure space (X, M, u) is
a filter base on the product space Z x X, where 7 is a family of measurable
subsets of X having positive measure p and called generalized intervals or
B-intervals. That is, B is a nonempty collection of subsets of Z x X so that
each 3 € B is a set of pairs (I,z), where I € Z, x € X, and B has the filter
base property: () ¢ B and for every (31, 32 € B there exists 5 € B such that
B C 1N Pa. So each basis is a directed set with the order given by “reversed”
inclusion. We shall refer to the elements 3 of B as basis sets. We suppose that
x € [ for all the pairs (I, x) constituting each 3 € B. For aset E C X and
0B € B we write

B(E):={(,x) € f:1CE} and B[E| :={(I,z) € f:z € E}.

Certain additional hypotheses guarantee some nice properties of a basis.
For example, it is useful to suppose that the basis B ignores no point, i.e.,
Bl{z}] # 0 for any point z € X and for any (3 € B.

If X is a metric or a topological space it is supposed that B is a Vitali basis
by which we mean that for any x and for any neighborhood U (x) of x there
exists B, € B such that I C U(x) for each pair (I, z) € (3.

A (-partition is a finite collection 7 of elements of 3, where the distinct
elements (I',z’) and (I”,2") in = have I’ and I" disjoint (or at least non-
overlapping, i.e., u(I' N I") = 0). Let L € Z. If 7 C (L) then  is called
(-partition in L, if | (1,z)ex L = L then 7 is called (-partition of L.

We say that a basis B has the partitioning property if the following con-
ditions hold: (7) for each finite collection Iy, I, ..., I,, of B-intervals with
I, ...I, C Iy the difference I \ U?Zl I; can be expressed as a finite union
of pairwise non-overlapping B-intervals; (ii) for each B-interval I and for any
0B € B there exists a G-partition of 1.
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DEFINITION 4.1 Let B be a basis having the partitioning property and L € 7.
A function f on L is said to be Hg-integrable on L, with Hg-integral A, if for
every € > 0, there exists 5 € B such that for any (-partition 7 of L we have:

ST @) - Af <.

(I,x)em
We denote the integral value A by (Hg) [; f.

It is easy to check that if a function f is Hpg-integrable on L, then it is
also integrable on each B-subintervals of L and so the indefinite Hp-integral
is defined as an additive B-interval function.

The following extension of the previous definition is useful in many cases.

DEFINITION 4.2 A function f defined almost everywhere on L € 7 is Hg-
integrable on L, with Hg-integral A, if the function

| f(=z), ifitis defined,
@)= { 0, otherwise,

is Hp-integrable on L and its Hp-integral is equal A.

Let F' be an additive set function on Z and E an arbitrary subset of X. For
a fixed § € B, we set

Var(E,F,8):= sup » [F(I)].
TCHIE]

We put also
Vr(E)=V(E,F,B) = 51612 Var(E, F, 3).

The extended real-valued set function Vi (+) is called variational measure gen-
erated by F', with respect to the basis 5. It is an outer measure and, in the
case of a metric space X, a metric outer measure (in the last case it should be
assumed that the basis is a Vitali basis).

Given a set function F' : Z — R we define the upper and lower B-derivative
at a point z, with respect to the basis B and measure p, as

DgF(x):= inf sup 2D and DgF(x):=sup inf ﬂ, 4.1)

BEB (12)ep 1) geBLx)es p(I)

respectively. As we have assumed that B ignores no point then it is always true
that DpF(x) > DgF(x). If DpF(x) = DgF(x) we call this common value
B-derivative DpF ().
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We say that a set function F’ is B-continuous at a point x, with respect to the
basis B, if Vp({z}) = 0.
We shall need the following (see [3, Proposition 1.6.4])

PROPOSITION 4.1 Let an additive function F' : T — R be B-differentiable
on L € T outside a set E C L such that Vi (E) = 0. Then the function

| DpF(xz), ifitexists,
f(x)_{o, ifv € B,

is Hp-integrable on L and F is its indefinite Hp-integral.
The next theorem is a corollary of the above proposition.

THEOREM 4.1 Let an additive function F' : T — R be B-differentiable ev-
erywhere on L € T outside of a set E with ji(E') = 0, and —oo < DgF(x) <
DgF(x) < +00 everywhere on E except on a countable set M C E where F
is B-continuous. Then the function

| DpF(x), ifitexists,
f(z) '_{ 0, ifr € E,

is Hp-integrable on L and F is its indefinite Hp-integral.

To define a Perron-type integral with respect to a basis B we remind that
a B-interval function F' is called B-superadditive (resp. B-subadditive) if ev-
ery finite collection {;}!_; of pair-wise non-overlapping B-intervals such that
P_, I, € T satisfies

iF(IﬂgF(OI}) (resp. zp:F(Ii)zF<OIi> ).

i=1 i=1 i=1 i=1

By Ap (resp. Ap) denote the set of all B-superadditive (resp. B-subadditive)
functions. A B-interval function F is called B-additive if F € Ag N Ag. Let
Ap denote the set of all B-additive functions.

With this notation we introduce the following definition of a Perron-type
integral.

DEFINITION 4.3 A function f defined on L € 7 is said to be Pg-integrable
on L if for every € > 0 there exist B-interval functions M € Agandm € Ag
such that

DgM(z) > f(x) > Dgm(x) for each z € L 4.2)

and M (L) — m(L) < e. The value of the Pg-integral on L is (Pg) [, f :=
infps M(L) = sup,,, m(L).
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This integral is known (see [3]) to be equivalent to the Hp-integral. If we
want the inequality 4.2 in this definition to hold not everywhere but with some
exceptional set then we need to assume some kind of continuity of the functions
M and m on this set. We consider below several generalizations of the P-
integral in this direction.

3. Dyadic Derivation Bases in [0, 1]™ and in Group G™

We consider here derivation bases in two spaces, according to two types of
domains on which the Walsh system can be defined. The first one is the unit
cube [0, 1]™ in which we consider the dyadic basis. Another example will be
a basis in the dyadic group G or in its cartesian product G".

In the case of X = [0, 1] the family Z of B-intervals is constituted by dyadic
intervals

my. | J J+1 , _
g = [2n o ] 0<j<2"—1, n=0,1,2,....

Here n is a rank of the interval.
If X = [0,1]™, B-intervals are defined as m-dimensional dyadic intervals

(m) _ 4(n1) (nm)
I =g s gt 4.3)
where j = (j1,...,Jm) and n = (n1,...,n,,), with n being a rank of the

interval. We denote the family of all these intervals by Z,.
To define a dyadic basis it is enough to define basis sets 5. For X = [0, 1]
we put
Bs:={le€Zy: ICU(xd))},

where ¢ is a so-called gauge, i.e., a positive function defined on X, and U (z, §)
denotes the neighborhood of x of radius d. So the dyadic basis is defined as
Bg:={fs: d: X — (0,00)}.

In the m-dimensional case we consider two dyadic basis. The first one is
defined exactly as above with Z; being the family of all m-dimensional dyadic
intervals. The second one is called a regular dyadic basis. To define it we use
the notion of regularity. The parameter of regularity of a dyadic interval of the
form (4.3) is defined as

min{|;"1/17571}
Analogously the parameter of regularity of a vector a = (a1, ..., ay,) is de-
fined as

miln{az-/al }.
1,
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We write reg(J) (resp. reg(a)) for the parameter of regularity of a dyadic
interval J (resp. of a vector a).
Now basis sets of p-regular dyadic basis By , we define as

Bsp:={1€Zg: I CU(x,d(x)), reg(l) > p}.

Applying Definition 4.1 to these dyadic bases we obtain Hp,-integral (the
dyadic Henstock integral) and Hp,  -integral (the p-regular dyadic Henstock
integral).

Now we turn to a group setting.

Recall (see [1, 2, 11]) that the dyadic group G is a set of sequences t =
{ti}2, where t; = 0 or 1 with group operation in G being defined as the
coordinate-wise addition (mod2). The topology in G is defined by a chain
of subgroups G, = {t = {t;} : t; = 0,7 < k}, k =0,1,... , so that
G = Gp and {0} = (2, Gy. With respect to this topology, the subgroups
G, are clopen sets and G is a zero-dimensional compact abelian group. The
factor group G /G,, contains 2" elements. We denote by K, any coset of the
subgroup Gy, and by K, (a) the coset of the subgroup G,, which contains an
elementa = {a;}3°,,i.e., Ky(a) == a+G, ={t ={t;} : ti=0a;,i < k}.In
particular G,, = K,,(0). For each a € G the sequence { K,,(a)} is decreasing
and {a} =, Kn(a).

In the product space G™ we consider, similarly to the case of the m-dimensional
cube, two types of B-intervals. By Zgm we denote a family of all the sets of
the form

Kn =Ky x...x Ky,

where n = (ny, ..., ny,) is a rank of this B-interval. If t € G™ then

Ka(t) == K, (t1) % ... x Kn, (tm)

If we assume here that reg(n) > p for some p € (0, 1], then we obtain the
family Igm of p-regular B-intervals. Accordingly we get two derivation bases
in G™. A basis Bgm is constituted by basis sets

By :={(I,t):t € G™, I = Ky(t), minn; > v(t)}

where v runs over the set of all integer-valued functions v : G™ — N and
n=(ny,...,nm). A p-regular basis B, is constituted by basis sets

B ={(I,t)€ B, :1€Tln}.

These two bases have all the properties of a general derivation basis. The
partitioning property follows easily from compactness of any Bgm-interval by
standard methods (see [3]).
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Using the normalized Haar measures on the group G we denote by p the
product measure on G™. Then pu(Ky,) = 2~ (M++mm) wheren = (ny, ..., 7m ).

Definition 4.1 of the Hg-integral can be rewritten for the bases in G™ in the
following form (see [15]):

DEFINITION 4.4 Let L. € Zgm. A function f defined on L is said to be
Hgm-integrable (resp. HP.,.-integrable) on L, with integral value A, if for
every € > 0, there exists a function v : L — N such that for any (3, -partition
(resp. 30-partition) 7 of L we have:

S FOull) - 4| <.

(It)er

We denote the integral value A by (Hgm) [; f
(resp. by (Hfm) [; 1)

Note that in the case of our basis B, given a point t, any [, -partition
contains only one pair (I,t) with this point t. Because of this we can re-
formulate the definition of 3-continuity in a simpler way, saying that a set
function F' is Bg-continuous at a point t, with respect to the basis Bg, if
lim,, o F(K,(t)) = 0.

The map

[ee]

t.
pitna=Y ot @
j=1

is one-to-one correspondence between the group G and the interval [0, 1], up
to a countable set. Indeed, denoting by ()4 the set of all dyadic rational points

in [0, 1], i.e., points of the form 21, 0<j<2% k=0,1,...,wenote that
each x € ()4 has two expansions, a finite one and an infinite one. If we exclude
from G the elements corresponding to one type of expansion, for example to

the infinite one, then the correspondence (4.4) is one-to-one and the converse

mapping ® ! is defined on [0,1). The function ® maps each Bgm-interval K,
(

onto a dyadic interval J; ™). So there is a closed relation between bases B, and
Bgm. But as we shall see below, the fact that G™ is a zero-dimensional space
while [0, 1]™ is connected, implies an essential difference in the properties
of the integrals defined with respect to those bases. The principal difference
can be seen already in the one-dimensional case. In the case of (G, we can
associate with each point ¢ € G, a unique sequence of nested Bg-intervals
K, (t) converging to t. We call it the basic sequence convergent to t. But in
the case of X = [0, 1] such a unique sequence of By-intervals can be associated
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with a point x only in the case x is dyadic-irrational. If x € ()4, then we can
associate with it two basic sequences of dyadic intervals: the left one and the
right one for which x is the common end-point, starting with some rank n.

In the product space G or [0, 1]™ the m-multiple sequence {I,} of B-
intervals is a basic sequence convergent to t € G™ (resp. to x € [0,1]™) if
In = I, x...x I, with {[,,} being the one-dimensional basic sequence
convergent to t; € G (resp. to x; € [0, 1]). Accordingly in G we have only
one basic sequence convergent to each t while in [0, 1]”* the number of basic
sequences convergent to x is equal 2°, 0 < s < m, if x has s dyadic-rational
coordinates.

4. Multiple Walsh and Haar Series
The Walsh functions (in Paley numeration) on G (see [2, 11]) are defined by

> tiEgn)
1=0

where

t={t}eq, n=> 2" (" e{o1)}).
=0

Using mapping ® ! considered above, we can define Walsh system on the unit
interval as w(®~!(x)). For these functions we shall use the same notation:
w(x).

The Haar functions are usually considered on [0,1). But in case of need
we can always pass to the group setting using the same mapping ¢. We put
xolx)=1.In=2F4+i(k=0,1,...,i=0,...,2" — 1), we put

W itec [ 2
n(z) =< =282 ifze [g il gi—ﬁ), '
0, ifze0,1)\ [2,311, giﬁ)

An m-dimensional Walsh (resp. Haar) series (both on G and on [0, 1]™)
is defined by

anwn Z Z bnl, ,anwm z 4.5)
n=0

n1=0 Nm=0

(resp. Y anxn(x) = Z Z ... anxn, ;) (4.6)
n=0

n1=0 Ny =0

where a,, and by, are real numbers. If N = (Ny, ..., N,,), then the Nth rectan-
gular partial sum S of series (4.5) (resp. (4.6)) at a point X = (21, ...,ZTp)
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is

Ni-1  Np-1 Ni-1  Np-1
SNn(x) = Z Z bnwn(x) (resp. Sn(x) := Z Z anXn(x) ).
n1=0 Ny =0 n1=0 Ny =0

The series (4.5) (or (4.6)) rectangularly converges to a sum S(x) at a point x
if
Sn(x) — S(x) as min{N;} — oo.
1

We consider also the regular convergence of series. Let p € (0,1]; then the
series (4.5) (or (4.6)) p-regularly converges to a sum S(x) at a point x if

Sn(x) — S(x) as min{N;} — oo and reg(N) > p.

It is obvious that if the series (4.5) (or (4.6)) rectangularly converges to a
sum S(x) at a point x then for every p € (0, 1] this series p-regularly converges
to S(x) at x.

A starting point for an application of the dyadic derivative and the dyadic
integral to the theory of Walsh and Haar series is an observation that due to
martingale properties of the partial sums Sy of those series (here 2¥ stand for
(2%, ..., 2km)) the integral [, Sqx where I (k) is a B-interval of rank k either
in [0, 1]™ or in G™, defines an additive B-interval function /() on the family
7 of all B intervals. (In dyadic analysis the function 1 is sometimes referred to
as quasi-measure (see [11, 16]).) Since the sum Sy is constant on each (k)
(in the interior of () in the case of [0, 1]™) we get

_ 1 _v(I®)
SQk(X) = W /[(k) SQk = W (47)

for any point x € (),

Another simple observation which is essential for proving that a given Walsh
or Haar series is the Fourier series in the sense of some general integral, is the
following statement (see [14, Proposition 4]).

PROPOSITION 4.2 Let some integration process A be given which produces
an integral additive on T or Zgm. Assume a series of the form (4.5) or (4.6)
is given. Let the B-interval function 1) be defined for this series by (4.7). Then
this series is the Fourier series of an A-integrable function f if and only if

Y(I) = (A) [ { for any B-interval I.

It is seen from formula (4.7) that for any point x in G™ or at least for points
with dyadic-irrational coordinates, in the case of [0, 1]™, rectangular (respec-
tively, p-regular rectangular) convergence of the series 4.5 (or (4.6)) at a point
x to a sum f(x) implies B-differentiability (respectively, B,-differentiability)
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of the function v in x with f(x) being the value of the B-derivative (resp.
B,-derivative).

So in order to solve the coefficient problem it is enough to show that the
function 1) is an integral of its derivative which exists at least almost every-
where. Then in view of Proposition 4.2 we get

THEOREM 4.2 [f the series (4.5) (or (4.6)) is rectangular (respectively, p-
regular rectangular) convergent to a sum [ almost everywhere on [0, 1])™ or
on G, outside a set I such that V,(E) = 0, then the function f is Hp-
integrable (respectively, Hp,-integrable and (4.5) (or (4.6)) is the Fourier
series of f, in the sense of the respective integral.

To use this theorem we need some additional information related to the be-
havior of a series on the exceptional set which would imply that the varia-
tional measure V; is equal zero on this set. Such a nice behavior of ¢ on the
exceptional set can be obtained either from a convergence condition or from
some additional growth assumptions imposed on the series. For example, it
can be easily shown, in the one-dimensional case, that if the coefficients of a
series 4.5 satisfy the condition lim,,_.., b, = 0 (which is a consequence of
the convergence of the series at least at one dyadic-irrational point) then ) is
B-continuous everywhere on [0, 1], and we apply Theorem 4.1 to get

THEOREM 4.3 If the series (4.5) (in one dimension) is convergent to a sum
f at each dyadic irrational point of [0, 1], then f is Hp,-integrable and 4.5 is
the Hp -Fourier series of f, i.e.,

b = (Ha,) / Fuy,
0.1)

S. Coefficients Problem for Rectangular Convergent
Series

In the case of the group setting, the equality (4.7) establishes the equiva-
lence of rectangular convergence of the series (4.5) and (4.6) with respect to
subsequence 2% and B-differentiability of the associated function v at each
point of G. So the problem of recovering the coefficients of everywhere con-
vergent series is reduced in this case to the problem of recovering the primitive
from the Bg-derivative. So in this case we have

THEOREM 4.4 If the series (4.5) (or (4.6)) is rectangular convergent to a
sum f everywhere on G™, then the function f is Hq-integrable and (4.5) (or
(4.6)) is the Fourier series of f, in the sense of the Hq-integral.

If we consider the series (4.5) and (4.6) on [0, 1] then the rectangular con-
vergence everywhere does not guarantee the differentiability of the function 1)
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everywhere. This function can fail to be differentiable on the set of points hav-
ing at least one dyadic-rational coordinate. This exceptional set is not count-
able. So we can not apply Theorem 4.1 to get a multidimensional generaliza-
tion of Theorem 4.3. Moreover it can be shown that B;-continuity of ¢ on the
exceptional set which follows from the convergence of the series is not enough
to solve the problem of recovering the primitive.

But in this case a stronger type of continuity can be proved, namely the
continuity in the sense of Saks.

DEFINITION 4.5 A Bg-interval function v is called continuous in the sense
of Saks if limy(I) — 0 as |I| — 0.

The next statement follows from [12].

PROPOSITION 4.3 Suppose the series 4.5 everywhere rectangularly converges
to a finite sum. Then the function 1) constructed for this series by 4.7 is contin-
uous in the sense of Saks.

Unfortunately continuity in the sense of Saks at the points of an exceptional
set is not enough to recover the primitive by Hp,-integral. A reason for this is
a fact that continuity of a function v in the sense of Saks on a set of measure
zero does not imply that the variational measure V; of this set is equal zero.
So we can not use Theorem 4.4. Nevertheless the problem can be solved by a
Perron-type integral which is a generalization of Pg,-integral.

DEFINITION 4.6 A function f defined on [0, 1] is said to be Pp,-integrable
if for every & > 0 there exist By-interval functions Fy € Ap and Fy € A such
that

(A) for each x with all dyadic-irrational coordinates

DgFi(x) > f(x) > DpFa(x);

(B) Fy and F5 are continuous in the sense of Saks everywhere on [0, 1]";
(©) F1([0,1]™) — F3([0,1]™) <.
Pp,-integral of the function f on [0, 1] is defined as

(Pa,) [ 1= ipf F(0.11") = sup Fa((0.11").

THEOREM 4.5 If the series (4.5) or (4.6) is rectangular convergent to a sum
f everywhere on [0,1]™, then the function f is Pp,-integrable and (4.5) or
(4.6) is the Fourier series of f, in the sense of the Pp,-integral.
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6. Coefficients Problem for Regular Rectangular
Convergent Series

Continuity in the sense of Saks can not be used to solve the problem in the
case of regular convergence. This is clear from the following result (see [10]).

PROPOSITION 4.4 For every p € (0,1] there is a double Walsh series p-
regularly convergent to a finite sum everywhere on [0,1]™, but By-interval

function 1) constructed for this series by (4.7) is not continuous in the sense of
Saks.

We shall use here another type of continuity at the points with dyadic-
rational coordinates

In [4] the problem of recovering the coefficients of everywhere convergent
double Haar series was considered. In that paper a Perron-type integral was
constructed. We introduce a modified version of this integral.

DEFINITION 4.7 We say that a finite function f defined on [0, 1]? is (Pdl/2)-
integrable if for every € > 0 there exist By-interval functions F; € Az and
F, € Ap with the following properties:

(A)if t = (t1,t2) € ([0,1] \ Qq) x ([0,1] \ Qq) and {I, ,} is the basic
sequence convergent to t, then

Fi (1 — F5(]
lim 1Lk k) > f(t) > Tm a( k,k);
hoo | Lhkl k—oo |t il

B)if t = (t1,t2) € Qq x ([0,1] \ Qq) and {I, k,} is the basic sequence
convergent to t, then

1

(Fi(fk,k) - 2Fi(Ik1,k)> =0 (i=1,2);

lim ——

(©)ift = (t1,t2) € ([0,1]* \ Qa) x Qq and {Iy, x,} be the basic sequence
convergent to t, then

lim

1
—_— . —_ - . _ = ) = 1 M
YA (Fz(Ik,k) 2Fz(~[k,k 1)) 0 (i=1,2);

(D) if t = (t1,t2) € Qq x Qg and {Ij, 1, } be the basic sequence con-
vergent to t, then limg IICIM(FZ(I;C;C) - %Fi(lk,k;—l) — %E(Ik—l,k) +

iE(IkLkl)) =0 (i=1,2);
(BE) F1([0,1]?) — F»(]0,1]?) < e.
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For every dyadic interval I C [0, 1]? we define (P; / 2)-integral of the func-

tion f on T as (P)/?) [, f(t1,ta) := infp, Fy(I) = supp, Fa(I).

THEOREM 4.6 (see [4, theorem 2]) Let p € (0,1/2] be chosen. Suppose
that a double Haar series (4.6) p-regularly converges to a finite sum f(t1,t2)
everywhere on [0, 1]%. Then the function f is (P;/Q)-integrable and (4.6) is its

Fourier series in the sense of the (P; / 2)-integral.

The condition p € (0,1/2] in the last theorem can not be replaced by the
condition p = 1. It is shown in [5] that there exists a non-trivial double Haar
series convergent cubically (i.e., 1-regularly) to zero everywhere on [0, 1]2.

One of the properties of (P; / 2)—integral is that this integral and Lebesgue
one are incomparable [6]. But these integrals are compatible, i.e., they do not

contradict to each other (see [8]). In [7] the construction of (P; / 2)—integral
was modified and the family of two-dimensional integrals was constructed.
This family solves the coefficients problem for double Haar series if a special
subsequence of rectangular partial sums is convergent (see [7, theorem 2]).

In [9] a generalization of (Pd1 / 2)—integral was introduced. We present here
a modified version of this generalization.

Let %, be the set of m-dimensional vectors 0 = (o1, ...,0,,) with o; €
{0,1} (¢ = 1,...,m). Fort = (t1,...,tm) € [0,1]™ we denote by ¢ ,,
the set of m-dimensional vectors ¢ = (o71,...,0,,) with 0; € {0,1} such

that if t; € Qg, then o; = 1. Let {I} be a basic sequence of intervals (4.3)
convergent to a point t € [0, 1]™. Put

I](f)z = Iki+1’ I]il = Ik’; \Ikl-i-l

If o € Y¢m oro € Xy, then we define by I the dyadic interval I,‘zll X. .. X IZ:
By |o| denote the sum |01 | + ... + |0y, ].

Let t € [0,1]™. We say that a function 7 is X,,,-continuous at a point t if
the equation

lim > (=pllra) =0

k1=...=k )
! mT Oezm

holds for any basic sequence { Iy} convergent to the point t.

DEFINITION 4.8 Let f be a finite function defined on ([0, 1] \ Q4)™ except

possibly on a countable set L. We say that a function f is (Pd1 / 2’*)-integrable
if for every € > 0 there exist B-interval functions F} € Apand F, € Apg with
the following properties:

(A) Fy and F; are 3,,,-continuous at every point t € [0, 1]™;

B)ift € ([0,1] \ @4)™ \ L and {Iy} be the basic sequence of the form (4.3)
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convergent to t, then

> f(t) > lim =
k1=...=km—00 ‘Ik’ () ki=..=km—o0 |Ik‘ ’

(C) if a point t € [0,1]™ \ L has exactly i« € {1,...,m} dyadic-rational
coordinates and { Iy} is the basic sequence convergent to t, then

1

; - _1\lol _ . .
klzmlir’gn*)oo ’Iﬁ-‘l_i/m Z ( 1) g F‘Z(Iﬁ—) =0 (Z = 17 2)7
0€Xt,m

(D) F1([0,1]™) — F»5([0,1]™) < e.
The (P; / 2’*)-integral of the function f on a dyadic interval I C [0, 1]™ is
defined as infr, Fy (1) = supp, Fo(1).

THEOREM 4.7 (see [9, theorem 6]). Let p € (0,1/2] be chosen. Suppose
that the series (4.6) and some countable set L C [0, 1]™ satisfy the following
conditions:

(1) for any t € [0, 1]™

buXn(t) =0¢(n1- ... ny), min{n;} — oo, min{n;/n;} >1/2; (4.8)
i 1,7

(2) forall t € (I4)™ \ L the series (4.6) p-regularly converges to a finite sum
f(6);

(3) if a point t € [0,1)™ \ L has exactly ¢ € {1,...,m} dyadic-rational
coordinates then

Sn(t) =0t ((Ny - ...« Npy)/™), min{N;} — oo %n{Ni/Nj} >1/2.

Then the function f is (Pd1 / 2’*)-integrable and 4.6 is its Fourier series in the
sense of the (P, /2*) integral.

In [10] the group G™ instead of the unit cube [0, 1] was considered. In this
case a more simple integral solving the coefficients problems for both Haar and
Walsh series was constructed.

DEFINITION 4.9 Let for every point t € G™ except possibly a countable
set L an increasing sequence of natural numbers {k; = k;(t)} be chosen.
We say that a finite function f defined on G \ L is P(k;)-integrable if for
every € > 0 there exist B-interval functions F; € Agand F, € Ap with the
following properties:

(A) Fy and F5 are X,,-continuous at every point t € G™;
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(B) if t is any point of G™ \ L and {Iy} is the basic sequence convergent to t
then

hﬁj—)ooFl(ij,...,kj)/|ij,...,k’j| > f(t) > ijOOFZ(Ik]’,...,kj)/|ij7,,,7k;j|;

(C) F1(G™) — Fy(G™) < e.
For every dyadic interval I the P(k;)-integral of the function f on I is defined
as infp, F1(I) = supp, Fo(1).

The next theorems were proven in [10].

THEOREM 4.8 Let at every pointt € G™, except possibly a countable set L,
the increasing sequence of natural numbers {k; = k;(t)} be chosen. Assume
that for the series (S) of the form (4.6) the following conditions hold:

(1) at every point t € G™ \ L the subsequence S, () gks(®) (t) of the cubical
partial sums of the series (S) converges to a finite sum f(t) as j — oo,

(2) at every point t € G™ the series (S) satisfies the condition (4.8).

Then the function f(t) is (P(k;))-integrable and the series (S) is its Fourier
series in the sense of the (P (k;j))-integral.

A similar result holds for the Walsh series.

THEOREM 4.9 Let at every point t € G™ except possibly a countable set L
an increasing sequence of natural numbers {k; = k;(t)} be chosen. Assume
that for the series (S) of the form (4.5) the following conditions hold:

(1) at every point t € G™ \ L the subsequence S, (©) k() (t) of the cubical
partial sums of the series (S) converges to a finite sum f(t) as j — oo,

(2) the series (S) satisfies the condition

an =0(1), min{n;} — oo, min{n;/n;} >1/2.
? 4,7

Then the function f(t) is (P(k;))-integrable and the series (S) is (P(k;))-
Fourier series of the function f(t).

As a corollary we get

THEOREM 4.10 Let a number p € (0,1/2] be chosen. Suppose that the m-
multiple Walsh or Haar series p-regularly converges to a finite sum f(t) at
every point t € G™ except possibly a countable set L. Then for every choice
of a sequence {kj = k;(t)} the function f(t) is (P(k;))-integrable and the
given series is (P(k;))-Fourier series of the function f(t).

For more details see [7], [8], [10] and [14].
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