Chapter 15

SETS OF UNIQUENESS FOR MULTIPLE WALSH **SERIES**

Mikhail G. Plotnikov

Vologoda State Milk Economy Academy Vologoda, Russia mgplotnikov@mail.ru

Abstract This brief review is devoted to the uniqueness problem for multiple Walsh series.

1. Introduction

The theory of uniqueness for orthogonal system originated from the well-

known Cantor's theorem [1872]: If a trigonometric series $\sum_{n=-\infty}^{\infty} a_n e^{inx}$ converges to zero everywhere on $[0,2\pi]$, then this series is identically zero, i.e., $a_n=0$ for all $n\in \mathbf{Z}$.

We remind the principal definitions.

Let $\{\psi_n\}$ be an orthogonal system of functions on some set A. Consider a series

$$\sum_{n} c_n \psi_n. \tag{15.1}$$

A set $L \subset A$ is called a *set of uniqueness* (or in short: a *U-set*) for the system $\{\psi_n\}$ if from the convergence of the series (15.1) to zero outside the set L it follows that $c_n=0$ for all n. If a set L is not a U-set for the system $\{\psi_n\}$ then it is called a set of multiplicity (or in short: a M-set) for the system $\{\psi_n\}$. With this terminology the Cantor theorem states that \emptyset is a *U*-set for trigonometric series.

Supported by Russian Foundation of Basic Research (grant 08-01-00669), and by Russian state program 'Young Scientists' (grant MC-3667.2007.1.)

2. Walsh-Paley System

Now we remind some basic results for one-dimensional Walsh-Paley system.

Vilenkin [13] first proved that \emptyset is a U-set (for Walsh series). Sneider [12], and, independently, Fine [3] have shown that every finite or countable set $L \subset [0,1]$ is a U-set. Sneider [12] also proved that every set $L \subset [0,1]$ of positive Lebesgue measure is a M-set and that there are uncountable Borel U-sets. Coury [2] has constructed a Borel M-set whose Lebesgue measure is zero. Skvortsov [11] strengthened the last result. He proved that there is a perfect M-set, whose Hausdorff p-measure is zero for all p > 0 (the definition of the Hausdorff p-measure is given below). Wade [14] proved that if L_1, L_2, \ldots is a sequence of closed U-sets then $\bigcup_{n=1}^{\infty} L_n$ is also a U-set.

3. Multidimensional Case

Now we consider the multidimensional case. We write G for the *dyadic group*.

Let $\{\omega_n(t)\}_{n=0}^{\infty}$ be the Walsh-Paley system on [0,1] or on G. Fix natural $d \geq 1$. Consider the d-multiple Walsh system on the G^d , i.e.,

$$\{\omega_{\mathbf{n}}(\mathbf{t})\} = \{\omega_{n_1}(t^1) \cdot \dots \cdot \omega_{n_d}(t^d)\}, \quad \mathbf{n} = (n_1, \dots, n_d), \quad \mathbf{t} = (t^1, \dots, t^d).$$
(15.2)

The *d-multiple Walsh series* is defined by

$$\sum_{\mathbf{n}=\mathbf{0}}^{\infty} b_{\mathbf{n}} \omega_{\mathbf{n}}(\mathbf{t}) = \sum_{n_1=0}^{\infty} \dots \sum_{n_d=0}^{\infty} b_{n_1,\dots,n_d} \prod_{i=1}^{d} \omega_{n_i}(t^i), \tag{15.3}$$

where $b_{\mathbf{n}}$ are real numbers. If $\mathbf{N} = (N_1, \dots, N_d)$, then the Nth rectangular partial sum $S_{\mathbf{N}}$ of the series (15.3) at a point \mathbf{t} is

$$S_{\mathbf{N}}(\mathbf{t}) = \sum_{n_1=0}^{N_1-1} \dots \sum_{n_d=0}^{N_d-1} b_{\mathbf{n}} \omega_{\mathbf{n}}(\mathbf{t}).$$

Let $d \geq 2$; then the series (15.3) converges rectangularly to a sum $S(\mathbf{t})$ at a point \mathbf{t} if

$$S_{\mathbf{N}}(\mathbf{t}) o S(\mathbf{t}) ext{ as } \min_i \{N_i\} o \infty.$$

Let $\rho \in (0,1]$; then the series (15.3) converges ρ -regularly to a sum $S(\mathbf{t})$ at a point \mathbf{t} if

$$S_{\mathbf{N}}(\mathbf{t}) o S(\mathbf{t}) \ \ \text{as} \ \ \min_i \{N_i\} o \infty \ \ \text{and} \ \ \min_{i,j} \{N_i/N_j\} \geq \rho.$$

The 1-regular convergence we call *cubical*.

Multidimensional Case 191

It is obvious that if the series (15.3) converges rectangularly to a sum $S(\mathbf{t})$ at a point \mathbf{t} then for every $\rho \in (0,1]$ this series converges ρ -regularly to $S(\mathbf{t})$ at \mathbf{t} .

Let $U_{\mathrm{rect},d}$ $(U_{\rho,d})$ denote the class of all U-sets for the system (15.2) with respect to the rectangular $(\rho$ -regular) convergence. Obviously, $U_{\rho,d} \subset U_{\mathrm{rect},d}$ for all $\rho \in (0,1]$.

It follows from results by Skvortsov [11] and Movsisyan [8] that if $L \subset [0,1]^d$ be a countable set, then $L \in U_{\mathrm{rect},d}$. The wide class of $U_{\mathrm{rect},d}$ -sets was constructed by Lukomskii [1989]. In this work it was also proved that if $E \subset [0,1]^{d-1}$, then $E \in U_{\mathrm{rect},d-1}$ if and only if $E \times G \in U_{\mathrm{rect},d}$. In particular there exist uncountable Borel sets $L \in U_{\mathrm{rect},d}$. Kholshchevnikova [4] proved the following multidimensional analogue of the Wade result: Let L_1, L_2, \ldots be a sequence of closed $U_{\mathrm{rect},d}$ -sets such that $L_n \subset (0,1)^d$ and $\mathrm{mes} L_n = 0$. Then $\bigcup_{n=1}^\infty L_n$ is a $U_{\mathrm{rect},d}$ -set.

Below the series (15.3) are considered on G^d instead of on $[0,1]^d$. Lukomskii [1996] proved that $\emptyset \in U_{\rho,d}$ for all $\rho \in (0,1]$. In Lukomskii [6] it was proven that $U_{\rho,d} \neq U_{\text{rect},d}$ for all $\rho \in (0,1]$.

We have proved the following results (see Plotnikov [9] and [10]).

Theorem 15.1 Let $L \subset G^d$ be a finite set. Then, $L \in U_{1.d}$.

Theorem 15.2 There exist countable sets $L \in U_{1,d}$.

Theorem 15.3 Let $L \subset G^d$ be a countable set. Then, $L \in U_{1/2,d}$.

Next we use the concepts of the Hausdorff p-measure and the Hausdorff dimension. Let $A \subset \mathbf{R}^d$. A covering of a set A is a collection $I = \{\Delta\}$ of sets $\Delta \subset \mathbf{R}^d$ such that $A \subset \bigcup_{\Delta \in I} \Delta$. Then the Hausdorff p-measure of a set A is defined by

$$\operatorname{mes}_{p} A = \liminf_{\varepsilon \to +0} \sum (\operatorname{diam} \Delta)^{p}, \tag{15.4}$$

where $\{\Delta\}$ is a finite or countable covering of a set A by cubes or balls Δ with diam $\Delta < \varepsilon$.

By the Hausdorff dimension of a set $A \subset \mathbf{R}^d$ we mean the number $\dim_H A$ equal to

$$\sup\{p \in \mathbf{R}, \, \operatorname{mes}_p A > 0\}. \tag{15.5}$$

Define the Hausdorff dimension of a set $L \subset G^d$. Recall that the dyadic group G is a set of the infinite sequences $t = \{t_k\}$ where $t_k = 0$ or 1. Consider the map $\varphi : G \to [0,1]$ given by the formula

$$\varphi(t) = \sum_{k=0}^{\infty} t_k 2^{-k-1}.$$

Let $\phi(\mathbf{t})=(\varphi(t^1),\ldots,\varphi(t^d))$ for $\mathbf{t}=(t^1,\ldots,t^d)$. Using (15.4) and (15.5) we define the Hausdorff dimension of a set $L\subset G^d$ by

$$\dim_H L = \dim_H(\phi(L)), \quad (\phi(L) \subset \mathbf{R}^d).$$

Theorem 15.4 For every $d=1,2,\ldots$ there is a perfect set $L\in U_{1,d}$ such that $\dim_H L=d$.

In the case d=1 the Theorem 15.4 and the results by Skvortsov [1977] are the complement of one another. These theorems show that the property of a set to be a U-set or a M-set does not depend on the Hausdorff dimension of the set.

4. Open Questions

In conclusion we state four open questions which seem to be of interest.

Question 1. Let $\rho \in (0,1]$ be chosen. Consider the series (15.3) on $[0,1]^d$. Is $\emptyset \in U_{\rho,d}$? The similar problem is also open for the multiple trigonometric system.

Question 2. Is any set $L \subset [0,1]^d$ (resp. $L \subset G^d$) with positive Lebesgue measure (resp. Haar measure) a set of multiplicity of d-multiple Walsh system for the rectangular or ρ -regular convergence? The analogous problem is open for the multiple trigonometric system.

Question 3. Is any countable set $L \subset G^d$ a set of uniqueness for d-multiple Walsh system for the cubical convergence?

Question 4. Consider the series (15.3) on G^d . Are there $0 < \rho_1 < \rho_2 \le 1$ such that $U_{\rho_1,d} \ne U_{\rho_2,d}$? The similar problem is open for the multiple trigonometric system.

Acknowledgments

The author is thankful to professor N.N. Kholshchevnikova for focusing his attention to Questions 1 and 2.

References

- [1] Cantor, G., "Ueber die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen", *Mathematische Annalen (Berlin-Cöttingen-Heidelberg)*, **5**, 1872, 123-132.
- [2] Coury, J.E., "A class of Walsh *M*-sets of measure zero", *J. Math. Anal. Appl*, **31**, No. 2, 1970, 318-320.
- [3] Fine, N.J., "On the Walsh functions", *Trans. Amer. Math. Soc*, **65**, No. 3, 1949, 372-414.

Open Questions 193

[4] Kholshchevnikova, N.N., "Union of sets of uniqueness for multiple Walsh and multiple trigonometric series", *Mat. Sb.*, **193**, No. 4, 2002, 135-160, Engl. transl. in *Sb. Math*, **193**, 2002, 609-633.

- [5] Lukomskii, S.F., "On certain classes of sets of uniqueness of multiple Walsh series", *Mat. Sb.*, **180**, 1989, 937-945; Engl. transl. in *Math. USSR-Sb.*, **67**, 1990, 393-401.
- [6] Lukomskii, S.F., "On a *U*-set for multiple Walsh series", *Anal. Math.*, **18**, No. 2, 1992, 127-138.
- [7] Lukomskii, S.F., Representation of functions by Walsh series and the coefficients of convergent Walsh series, Doctoral thesis, Phys&Math., Saratov State Univ., Saratov, 1996, (in Russian).
- [8] Movsisyan, Kh.O., "The uniqueness of double series in the Haar and Walsh system", *Izv. Akad. Nauk. Armjan. SSR*, *Ser. Mat.*, **9**, No. 1, 1974, 40-61, (in Russian).
- [9] Plotnikov, M.G., "On multiple Walsh series convergent over cubes", *Izv. RAN: Ser. Mat.*, **71**, No. 1, 2007, 61-78; Engl. transl. in *Izvestiya: Math.*, **71**, No. 1, (2007), 57-73.
- [10] Plotnikov, M.G., "On uniqueness sets for multiple Walsh series", *Mat. Zametki*, **81**, No. 2, 2007, 265-279, Engl. transl. in *Math. Notes*, **81**, No. 2 (2007), 234–246.
- [11] Skvortsov, V.A., "On the coefficients of convergent multiple Haar and Walsh series", *Vestnik Moskov. Univ., Ser I Mat. Meh.*, No. 6, 1973, 77-79, Engl. transl. in *Moscow Univ. Math. Bull.*, No. 5-6, (1974), 119-121.
- [12] Šneider, A.A., "On uniqueness of expansion on Walsh system", *Mat. sb.*, **24**, No. 2, 1949, 279-300, (in Russian).
- [13] Vilenkin, N.Ya., "A class of complete orthogonal system", *Izv. Acad. Nauk SSSR, Ser. Mat.*, No. 11, 1947, 363-400, (in Russian).
- [14] Wade, W.R., "Summing closed *U*-set for Walsh series", *Proc. Amer. Math. Soc*, **2**, No. 1, 1971, 123-125.