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Abstract In this paper we present a short account of the development of the theory of
Gibbs differentiation on the occasion of 40th anniversary of its introduction [20],
and the 35th of Butzer-Wagner dyadic derivative [10] as well as the 30th anniver-
sary of Onneweer’s extension of the theory to Vilenkin groups [40], the two most
important results in two different ways of generalization of the Gibbs’ introduc-
tory result. We also attempt to give a rather general characterization of Gibbs
derivatives viewed as a class of differential operators on different not necessarily
Abelian groups.

1. Background and motivation

Signals are physical conveyors of information. They are physical processes
which spread in space-time and, therefore, are conveniently modeled by ele-
ments of some functional spaces. In this setting, signals are frequently identi-
fied with their mathematical models.

The following classes of signals can be distinguished in signal theory [45].
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1 Signals modeled by real variable functions are called continuous sig-
nals. The continuous signals of the continuous amplitude are analog or
analogue signals.

2 Discrete signals are modeled by discrete functions, i.e., they are usually
considered as functions on the set of integers Z or on some of its subsets
Z, of integers less than some given gq.

3 Discrete signals taking their values in some finite sets are digital signals.

Irrespective to which class belong, signals should be processed in order to
extract, interpret, and exploit the information contained in them. Mathematics
provide a theoretical base for disclosing various signal processing tools. The
Fourier analysis and differential calculus are certainly the two most powerful
among them.

The Fourier analysis expresses two important principles, the superposition
and the linearity, both principles often present in engineering considerations
of physical phenomena. In this way, the Fourier analysis provides means for
mathematical description of a system in an approach frequently used in en-
gineering practice, the decomposition of a complex problem into finitely or
countably many simpler subproblems.

In the same ground, differential operators are conveniently used to express
the direction as well as the rate of change of a signal at the input and/or output
of a system, providing in this way the information about the state of the system
considered.

A conviction prevalent for a long time was that signals existing in reality
could be described adequately exclusively by functions on the real line R. A
reason for that could be the conjecture that the topology of space-time is well
represented by the topology of the real line. For that reason the Fourier analysis
and differential calculus were first established, and for many years restricted,
almost ultimately to R, the continuum which is one of the most sophisticated
structures in mathematics.

This fact has been noticed as a paradox of history [25]. The mentioned
conviction was greatly changed by the recognition of the so-called sampling
theorem [36], [56], which states that, under certain conditions, continuous sig-
nals could be adequately represented by their discrete counterparts.

These conditions are conveniently expressed in terms of Fourier coefficients,
and we can realize again the importance of Fourier analysis in signal process-
ing.

It could be stated that the interest in practical engineering applications of
discrete structures and functions defined on them sprang after the publication
of famous Shannon’s paper [56], although the essence of sampling theorem
were known much earlier, see for example, [31].
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In this settings the practical applicability of Fourier analysis were further
supported by the rediscovery of the Fast Fourier transform, FFT, [16] which is
a fast algorithm for the calculation of Fourier coefficients on finite groups. We
use the term rediscovered since, similarly as in the case of sampling theorem,
the essence of FFT was known to some authors of earlier times, as it is well
documented in [30]. Today, FFT should be appreciated as a corner stone of
the theory of fast signal processing transformations and the key part of many
signal processing algorithms.

Among discrete functions, the switching functions defined as the mapping
f:{0,1}" — {0,1}, n € N - the set of natural numbers, are probably
most widely used, since all digital devices at the hardware level are realized by
circuitry based upon two stable state basic elements.

Actually, the switching theory dealing with switching functions, provides a
mathematical base for the description of behavior and functioning of digital
devices and the representation of signals by binary sequences.

The discrete Walsh transform [73] is the basis for the Fourier analysis com-
patible with switching functions, the Walsh-Fourier analysis, since these func-
tions can be conveniently viewed as a particular subset of functions on finite
dyadic group, which consists of the set of 2" binary n-tuples x = (21, ..., Ty),
x; € {0,1}, under the componentwise addition modulo 2.

Recall that the Walsh functions, the basis for the Walsh-Fourier analysis, are
the group characters of the dyadic group [17], and therefore the Fourier anal-
ysis on that group is based upon them in the same way as the classical Fourier
analysis is based upon the exponential functions e/’*, the group characters of
the real line R viewed as a particular locally compact Abelian group [53]. It
is the same for the discrete Walsh functions viewed as the group characters of
finite dyadic groups [1], [2].

The Walsh functions take only two different values =1 and, therefore are
also in that respect compatible with binary-valued switching functions. This
fact ensures at the same time the simplicity of computation with Walsh func-
tions. As we noted, the Walsh transform is a particular case of Fourier trans-
form on groups, and therefore, can be performed by fast transform algorithms
derived as a particular case of FFT, see for example [1], [3], [54]. The fast
Walsh transform can be computed without multiplication, which make it the
computationally most efficient among Fourier transforms on different groups,
since the multiplication is usually a more time consuming operation than ad-
dition when realized with present software and hardware technological re-
sources.

In this way, the group theoretic approach to Fourier analysis, which suggests
to use group characters for locally Abelian and unitary irreducible group repre-
sentations for compact non-Abelan groups as kernels for the Fourier transform,
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enables a unique way of the extension of this theory to structures other than R
and in particular to discrete structures.

Regarding differentiation, the extension was not so straightforward. The
discrete and piecewise constant functions used with digital devices cannot be
differentiated in the Newton-Leibniz sense and the need for an appropriate dif-
ferential operator was apparent from almost the beginning of the use of discrete
functions in engineering practice, especially in communications [39], [50].

It is quite understandable that first results were set in switching theory by the
introduction of the Boolean difference [39], [50], since at the hardware level,
digital communications are implemented through binary valued sequences.

The theory of this operator was established in [2],[69] and its application
proved very useful in many areas of logic design and digital communications.

The term Boolean differential calculus is now often used, see for example
explanation given in [70], although the Boolean difference can hardly be ac-
cepted as a proper differentiator, since it does not permit to distinguish the
change of a switching variable from 0 to 1 from that of 1 to 0.

In any way, the Boolean difference is acting on the set of switching functions
and, therefore, is a very particular answer to the problem of differentiation of
discrete and piecewise constant functions used with digital devices.

The interest in Walsh functions, which raised in latest sixties, provide an-
other motive for investigations on differentiation of such functions. At that
time it was apparent a desire to consider the Walsh functions as a particular
case of special functions [4], examples of which are Bessel, Chebyshev, La-
guerre, Hermite, Lagrange, Legendre, etc., [4].

Special functions are usually generated as the solutions of some generating
differential equations and, therefore, a corresponding differential operator was
needed.

In the pioneering work in 1967, J. Edmund Gibbs proposed the following
definition by attempting to answer to this desire for a differential operator in
the case of discrete Walsh functions.

DEFINITION 12.1 (Gibbs finite derivative)
For a function f defined on finite dyadic group of order 2", the finite dyadic
derivative f(V) is defined as

n—1
fO@)==2"") (fao2) - f(x)2", Voefo,...,2" -1}
r=0

The finite dyadic derivative of a function f we also denote by D f. This
operator D, also called logical derivative [23], [24], has the discrete Walsh
functions as its eigenfunctions.
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It follows that the discrete Walsh functions emerge as the solutions of the
first order dyadic differential equation

Df—Af=0, re{0,1,...,2"—1}.

As it is explained in [21], the operator was introduced quite independently
on any work on Boolean difference. However, by relating these two opera-
tors [18], [19], the application of the finite dyadic derivative in the same areas
where Boolean difference was already applied proved very interesting [32]. At
the same time, the interpretation of finite dyadic derivative as the linear com-
bination of partial dyadic derivatives, similar to Boolean differences relative to
particular coordinates [64], offered a mean for the derivation of fast algorithms
for the calculation of Gibbs derivatives on finite groups, the later generaliza-
tions of finite dyadic derivative [66]. Note that the term Gibbs derivatives was
established and confirmed in particular at the First international Workshop on
Gibbs derivatives in 1989 [9] in order to denote a broad family of differential
operators representing the generalizations and extensions or were inspired by
the finite dyadic derivative originated by J. Edmund Gibbs [21].

2. Generalizations of the finite dyadic Gibbs derivative

The great interest in practical engineering applications of Walsh analysis
which sprang after the publication of Harmuth’s paper in 1960 [29] provided
a very suitable environment for further work on Gibbs derivatives. The activ-
ity in the area of Walsh analysis is best illustrated by the fact that from 1970
to 1974 the specialized conferences completely devoted to Walsh and related
functions and their applications were organized in U.S.A. Moreover, in 1971,
1973, and 1975 the conferences on this particular subject were organized also
in England, so that two conferences per year on the same subject were orga-
nized. This research work intended towards applications in computer science
and engineering, leaded to the extension of the theory of Walsh and related
functions into the so-called spectral techniques (5], [33], [34], [38], which are
from that time the subject of specialized workshops or are discussed at standard
sections at many conferences and meetings on signal processing and multiple-
valued logic. Research papers on these subjects are accepted by many mathe-
matical and engineering journals. For example, the journal /EEE Transactions
on Electromagnetic Compatibility published by IEEE Press had the Associate
Editors for Walsh and non-sinusoidal functions. This position was served very
successfully by Henning F. Harmuth for many years.

The great activity in the area of Walsh functions have resulted among other
things in some interesting generalizations and extensions of finite dyadic deriva-
tive. It should be noticed that 40 papers on the subject were presented at the
conferences on Walsh and related functions from 1970 to 1975. Today the bib-
liography on Gibbs derivatives consists of over 277 items published by 69 au-
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thors from 14 nations all over the World. Among these, the probably most im-
portant and certainly most widely discussed result is the Butzer-Wagner dyadic
derivative introduced 35 years ago [10].

Roughly speaking, two different ways of generalization of finite dyadic
derivative can be distinguished. In essence, they are based upon two alter-
native interpretations of the basic property of finite dyadic derivative that the
discrete Walsh functions are the eigenfunctions of that operator.

First, this property implies that the Walsh functions are infinitably many
times dyadicaly differentiable. Various extensions of the finite dyadic Gibbs
derivative were aimed at extending the class of differentiable functions.

The second implication concerns to the relationship of finite dyadic deriva-
tive with Walsh transform similar to the relationship of the Newton-Leibniz
derivative with the Fourier transform in classical analysis on R. This was a ba-
sis for generalizations of Gibbs differentiation to groups other than the dyadic

group.

Extension of the class of differentiable functions

The way of generalizations based upon the first implication, that started 35
years ago by Butzer and Wagner [10], is devoted to the extension of the class
of functions differentiable in some sense, in this case, the dyadic sense. The
approach were originated in Walsh-Fourier analysis on [0, 1] and, therefore,
mainly concerns functions on that interval. Recall that this interval can be
identified with the infinite dyadic group consisting of countably many copies
of the finite dyadic group of order 2 enriched with the product topology owing
to the mapping

)\(1’1,1’2,...) = szﬂfi, x; € {0,1}.
=1

The Walsh functions, being the characters of the dyadic group [17], form a
complete orthonormal system in the space L? of measurable functions square
integrable on the interval [0, 1].

Butzer and Wagner [10] extended the concept of dyadic differentiation from
finite dyadic group to the infinite dyadic group, or alternatively interval [0, 1],
by introducing a derivative D on [0, 1] which eigenfunctions are the Walsh
functions in the Kaczmarcz ordering, i.e., for which

D(waly) =k -wal,, k=0,1,..., (12.1)

where waly, denotes the Walsh function of order k in the Kaczmarz ordering.
Butzer and Wagner also defined a derivative which expresses the same rela-
tion with respect to the Paley ordered Walsh functions [11].
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Denoting by X either the space ¢ of functions continuous on [0, 1] or one
of the spaces P, 1 < p < oo of measurable functions whose p-th power
is integrable over the interval [0, 1], the Butzer-Wagner derivative for Paley
ordered Walsh functions can be described as follows.

DEFINITION 12.2 (Butzer-Wagner derivative for Paley ordering)
For a function f € X for which the sequence of functions

n—1
dn(f,2) = 27 (f(z) = flwe 2777,
j=0

converges in the norm of X the strong Butzer-Wagner dyadic derivative is de-
fined as the limit

lim d,(f,x).

n—oo
Notice that Butzer and Wagner [13] further introduced the concept of the point-
wise dyadic derivative by saying that a function from [0, 1] has the point-
wise dyadic derivative at a point = € [0, 1] if the sequence of real numbers
{dn(f,x)} converges as n — oc.

The relation (12.1) is true for all z € [0, 1] also for the pointwise Butzer-

Wagner dyadic derivative with respect to the generalized Walsh functions W, (),
ie.,

D(‘I’y)(x) = |y|\1jy(1’)»

for x, y taking values in the dyadic field.

As it is noticed in [6], [71], the dyadic derivative was especially adopted to
functions having many jumps and possessing just a few and also short intervals
of constancy. Even functions having a denumerable set of discontinuities like
the well-known Dirichlet function can be dyadic differentiated on [0, 1] [76].

The extended dyadic derivative [7], [8] based upon the works by Butzer and
Wagner [10], [11], [13] and He Zelin [77] is applicable also to piecewise poly-
nomial functions, i.e., to functions which are made up entirely of polynomial
pieces between the consecutive jumping points.

Extensions to functions on different groups

A possible characterization of Butzer-Wagner dyadic derivative can be given
in terms of Walsh series coefficients Sy(w) of f as

Spr(w) = wSy(w), w=1,2,..., (12.2)
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which is a consequence of the fact that Walsh functions are the eigenfunctions
of this differential operator. Obviously, the same is true for dyadic derivative
on finite groups [25].

The second way of generalization of the finite dyadic derivatives devoted to
the transfer of the concept of differentiation to structures other than real line
R is based just upon that characterization of finite dyadic derivative and the
Butzer-Wagner dyadic derivatives.

The basic idea is relatively simple. The Newton-Leibniz derivative can be
viewed as the linear operator mapping the exponential functions e/’*, the char-
acters of the real line R, into jw times of themselves.

The similar holds for the dyadic derivatives, relation (12.1), where the real
line is replaced by the dyadic group and the exponential functions by the Walsh
functions, the characters of the dyadic group. This relation reads as the relation
(12.2) in the transform domain owing to the orthogonality of Fourier transform
on groups. The theory should be extended to other locally compact Abelian or
compact non-Abelian groups by the replacement of Walsh functions by the
characters of the corresponding Abelian group or by unitary irreducible repre-
sentations of the non-Abelian groups.

It is interesting to note that from this group-theoretic approach point of
view there is apparent some parallelism between the ways of development of
abstract harmonic analysis and the theory of Gibbs differential calculus on
groups.

Recall that the abstract harmonic analysis is the mathematical discipline de-
veloped from the classical Fourier analysis by the replacement of the real line
R, which is a particular locally compact Abelian group, by arbitrary locally
compact Abelian or compact non-Abelian group. The same has been done in
the case of Gibbs derivatives by using the relation (12.2) as a defining relation-
ship of these operators. The first attempts in this direction were given again by
J.E. Gibbs and his associates [14], [25].

A considerable extension of Gibbs differentiation on groups were given 30
years ago by Cornelis W.Onneweer [40] who introduced a Vilenkin group ana-
logue of the dyadic derivative showing that the characters of the Vilenkin group
are the eigenfunctions of the introduced differential operator and argued that
the Butzer-Wagner characterization (12.2) caries over with extra work to this
setting. See, also [49], [71].

In the similar way, there have been defined L"-weak p-adic derivative, the
adjacent p-adic derivative, the partial p-adic derivative [51], [74], [78]. See
also [75].

Several other authors consider this way of generalizations of Gibbs differ-
ential calculus to other structures including also the discrete structures.

For example, Pél [46] defined the dyadic derivative D f on the dyadic field,
i.e., for functions f € L'(0,00) and showed that the Walsh transform F' de-
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fined in [17], interacts with D as follows: if Df exists then F(Df)(y) =
yF(y) and D(Fy)(z) = F(af(x)) if 2f(z) € L'(0,00).

In [48], Pél constructed an indefinite integral for D and proved a fundamen-
tal theorem of calculus in this setting. The extension of the dyadic differentia-
tion to R+ were also considered, see for example [12], [47], as well as to local
fields [44].

Recently, Golubov [27] introduced the modified strong dyadic integral .J,,
and the fractional derivative D(®) of order o« > 0 for functions from the
Lebesgue space L( R ). Established are criteria for existence of these integrals
and derivatives for a given function f € L(R;) and determined a countable
set of eigenfunctions of these operators.

For the fractional dyadic derivative and integral, proven are in [28], the theo-
rem on differentiation of the indefinite Lebesgue integral of an integrable func-
tion at its Lebesgue points, and the theorem on reconstruction of an absolutely
continuous function by means of its derivative. These theorems can be viewed
as analogues of the theorems of Lebesgue in classical analysis.

A class of generalizations of Gibbs differential calculus concerning both
functions defined on the interval [0, 1] and on different discrete Abelian groups
is obtained through the replacement of group characters by some other orthog-
onal systems, as for example, the system of Haar functions [58], discrete Haar
functions [67] and generalized Haar functions [68], by an arbitrary orthogonal
system [62], or even by an arbitrary bi-orthogonal system [59].

The transfer of the notion of Gibbs differentiation to finite non-Abelian
groups was done in [60] and further considered in [61], [63], [65]. An ap-
proach to the extension of definition of Gibbs derivative to infinite non-Abelian
groups was suggested in [61] following the idea of Butzer-Wagner definition
of strong dyadic derivative.

3. Towards a general characterization of Gibbs
derivatives

In this section we will attempt to give a characterization of Gibbs derivatives
through a group-theoretic approach to the subject.

In order to cover in a uniform way the case of functions on Abelain and non-
Abelian groups, we restrict the considerations to the space K (G) of functions
defined on a locally compact Abelian or a finite non-Abelian group G taking
the values in a field K admitting the existence of a Fourier transform.

In a general ground, the Gibbs derivative of order k of a function f € K(G),
which we denote by DF f is considered as the linear operator in K (G) satisfy-
ing the relationship

(F(D* ) (w) = ¢(w, k)(F(f))(w), (12.3)

where F denotes the Fourier transform operator in K (G).
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In the most examples ¢(w, k) = w”, but in some cases a scaling factor
should be added, see, for example [23], while in a few particular cases the
function ¢ differs and is related to the order of group GG. For example, in the
case of extended Butzer-Wagner dyadic derivative [7], ¢(w, k) = (w*(w))F,
where

oo
w* =Y (=1)'w2,
=0

w;, being the coefficients in the dyadic expansion of w € P.

It is important to notice that in any case the definition of the function ¢, and
in this way of the Gibbs derivative, relates to the ordering of group characters
or unitary irreducible group representations of G.

For example, as noticed above, the Butzer-Wagner dyadic derivative has
been defined for the Kaczmarcz and Paley ordered Walsh functions.

From the very beginning of the theory of Gibbs differentiation this was con-
sidered as a deficiency of the theory. The problem has been discussed by J.E.
Gibbs and several other authors, in particular in details by C.W. Onneweer
[41], who endeavored to erase it by suggesting new definitions of derivatives
on p-adic and p-series fields.

Another definition of dyadic derivative were offered in [42] and compared
with some other definitions of that operator. At the same time, as is noticed
in [37], different orderings of group characters or unitary irreducible repre-
sentations could offer for a given group G the family of Gibbs derivatives
some of which could be potentially more convenient than others regarding
some concrete applications and numerical calculations. The best ordering of
group characters or unitary irreducible representations regarding the efficiency
of numerical calculation of Gibbs derivatives on finite groups is determined in
[66] using the corresponding results for the implementations of FFT on finite
groups. Note that depending on the range of the exponent k the given char-
acterization of Gibbs derivatives extends under appropriate conditions to the
fractional Gibbs derivatives, and for £ < 0 subsumes the concept of Gibbs
anti-derivatives. See [11], [55], [63], [65], [76], [77] for some particular ex-
amples. The uniqueness of the considered class of differential operators is
assured by the requirement that the eigenfunctions of Gibbs derivative are the
group characters for Abelian groups and the elements of unitary irreducible
representations for finite Abelian groups, i.e.,

D*(xw) = a(w, k)xuw, (12.4)
for Abelian groups, and

DkREj,j) = a(w, k)Rg’j), (12.5)
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for non-Abelian groups, where Y., is the w-th group character of an Abelian,

and jo Jis (4, 7)-th element of w-th unitary irreducible representation R, of
a non-Abelian group. Note that the eigenvalues a(w, k) of Gibbs derivatives
depend on the ordering of group characters or unitary irreducible group repre-
sentations in the same way as the function ¢(w, k) depend on that ordering.

If a Gibbs derivative is defined so that ¢(w, k) = w* in the transform do-
main, then owing to the orthogonality of Fourier transform, a(w,k) = w*
in the original domain, where w is the index of w-th group character or uni-
tary irreducible representation in the corresponding ordering. For example, w
could be the index of w-th Walsh function in Kaczmarcz ordering if the def-
inition of Butzer-Wagner dyadic derivative given in [10] is used, or the index
of w-th Walsh function in Paley ordering in the case of Butzer-Wagner dyadic
derivative introduced in [11].

Alternative definitions of Gibbs derivatives could yield different eigenval-
ues. For example, the dyadic derivative derived for p = 2 from the Onneweer’s
definition of dyadic derivative on p-series fields yields different eigenvalues
from those of the strong Butzer-Wagner dyadic derivative, since in that case

D(waly) = 2"wal, 2" <k<2"' n=0,1,.... (12.6)

Properties of Gibbs derivatives

Besides linearity, the relation (12.3) and its consequence (12.4) or respec-
tively (12.5), the main properties of Gibbs derivatives could be given as fol-
lows.

1 The derivative of a constant
Df =0 € K, iff fis a constant function,

2 Convolution property

D(fi* fo) = (Df1) * f2= f1x (Df2) € K(G),
where * denotes the convolution in K (G).

3 The group characters x., for Abelian groups and the functions f; j(z) =
R(:9) (z) for finite non-Abelian groups are infinitely many times Gibbs
differentiable functions.

4 The Gibbs derivatives do not obey the product rule, i.e., it is false that
D(f1- f2) = (h(Df2) + (Df1)f2,  Vf1, f2 € K(G).

Notice that the product rule is used as a base for the introduction of Ritt-
Kolchin derivatives [35], [52] and, therefore, it follows that the Gibbs
derivatives can not be involved in that class of differential operators [15].
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5 Shift invariance

D(T.f) =Tu(Df), Vf e K(G),

where Ty, denotes the shift operator on G defined as T, f(z) = f(z o a),
where o denotes the group operation on G.

6 Haar integral of the derivative

/GDf—OeK.

7 D is a closed operator in K (G).

We infer by the inspection of many particular Gibbs derivatives that the pre-
sented general characterization can be given, but we do not have any pretention
to subsume all existing particular cases. In any case, the properties 1-7 can be
recognized in the presented or in some slightly modified form in the very most
of the particular examples of Gibbs derivatives.

For some generalized product rules for finite dyadic derivative, see [64].

The product rule for extended Butzer-Wagner dyadic derivative valid for
Walsh functions is given in [8]. Regarding relationship of Gibbs derivatives
with some other differential operators, note that a relationship between strong
dyadic derivative and classical Dini derivatives were given in [13], [57].

The relationship of Gibbs differentiation with classical Newton-Leibniz dif-
ferentiation were discussed in [22].

4. Closing Remarks

Trying to estimate and appreciate the role of Gibbs derivatives on the oc-
casion of 40th anniversary of its introduction and 35th and 30th anniversary
of two important generalizations by P.L.. Butzer and H.J. Wagner, C.W. Onne-
weer, and other authors, we want to point out the following.

1 Gibbs derivatives enable the transfer of differentiation from the real line
to different discrete, and otherwise, not necessarily Abelian structures.

2 Through some particular Gibbs derivatives the class of functions differ-
entiable in some sense, in this case, Gibbs sense, is greatly extended.

3 Some Gibbs derivatives have found interesting applications in different
areas as, for example, logic design, statistics, sampling theory, system
theory and signal processing, see [26] for the relevant references.

4 Efficiently characterized by Fourier coefficients on groups, Gibbs deriva-
tives can be considered as a part of abstract harmonic analysis, giving to
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this mathematical discipline another quality, since relate it with a differ-
ential calculus in the same way as the classical Fourier analysis is related
to Newton-Leibniz differentiation.
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