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Abstract In this survey paper we present some results on summability of one- and multi-
dimensional Walsh-Fourier series and on the dyadic derivative. Three summabil-
ity methods, the Fejér, Cesàro and Riesz methods are investigated. In the multi-
dimensional case three types of convergence are considered, the restricted, the
unrestricted and the Marcinkiewicz-type. We will prove that the maximal oper-
ator of the summability means is bounded from the martingale Hardy space Hp

to Lp (p > p0). For p = 1 we obtain a weak type inequality by interpolation,
which ensures the a.e. convergence of the summability means. Similar results
are formulated for the one- and multi-dimensional dyadic or Gibbs derivative.
The dyadic version of the classical theorem of Lebesgue is proved, more ex-
actly, the dyadic derivative of the dyadic integral of a function f is a.e. f .

1. Introduction
In this paper we will consider summation methods for one-dimensional and

multi-dimensional Walsh-Fourier series and the one- and multi-dimensional
dyadic derivative. First we present the corresponding results for trigonometric
Fourier series and then the extensions to Walsh-Fourier series. Three types of
summability methods will be investigated, the Fejér, Cesàro or (C, α) and the
Riesz methods. The Fejér summation is a special case of the Cesàro method,
(C, 1) is exactly the Fejér method. In the multi-dimensional case three types
of convergence and maximal operators are considered, the restricted (conver-
gence over the diagonal or over a cone), the unrestricted (convergence over
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Nd) and the Marcinkiewicz-type. We introduce martingale Hardy spaces Hp

and prove that the maximal operators of the summability means are bounded
from Hp to Lp whenever p > p0 for some p0 < 1. For p = 1 we obtain
a weak type inequality by interpolation, which implies the a.e. convergence
of the summability means. The a.e. convergence and the weak type inequal-
ity are proved usually with the help of a Calderon-Zygmund type decomposi-
tion lemma. However, this lemma does not work in higher dimensions. Our
method, that can be applied in higher dimension, too, can be regarded as a new
method to prove the a.e. convergence and weak type inequalities.

Similar results are formulated for the one- and multi-dimensional dyadic or
Gibbs derivative. We get that the maximal operators are bounded from Hp to
Lp if p > p0 (p0 < 1) and a weak type inequality if p = 1. This implies the
dyadic version of the classical theorem of Lebesgue, more exactly, the dyadic
derivative of the dyadic integral of a function f is a.e. f . In this survey paper
we summarize the results appeared in this topic in the last 10–20 years. The
analogous results of this paper are proved for the trigonometric, Vilenkin and
Ciesielski systems in Weisz [93, 91].

2. One-dimensional Walsh-Fourier Series
The well known Carleson’s theorem [8] says, that the partial sums snf of

the trigonometric Fourier series of a one-dimensional function f ∈ L2(T)
converge a.e. to f as n → ∞. Later Hunt [35] extended this result to all
1 < p < ∞. This theorem does not hold, if p = 1. However, if we take some
summability methods, we can obtain convergence for L1 functions, too.

In 1904 Fejér [15] investigated the arithmetic means of the partial sums, the
so called Fejér means and proved that if the left and right limits f(x − 0) and
f(x + 0) exist at a point x, then the Fejér means converge to f(x). One year
later Lebesgue [38] extended this theorem and obtained that every integrable
function is Fejér summable at each Lebesgue point, thus a.e. The Cesàro means
or (C, α) (α > 0) means are generalizations of the Fejér means; if α = 1 then
the two types of means are the same. M. Riesz [50] proved that the (C, α)
(α > 0) means σα

nf of a function f ∈ L1(T) converge a.e. to f as n → ∞
(see also Zygmund [98, Vol. I, p.94]). Moreover, it is known that the maximal
operator of the (C, α) means σα∗ := supn∈N |σα

n | is of weak type (1, 1), i.e.,

sup
ρ>0

ρλ(σ∗f > ρ) ≤ C‖f‖1 (f ∈ L1(T)).

This result can be found implicitly in Zygmund [98, Vol. I, pp. 154-156].
For the Fejér means Móricz [43] and Weisz [78] verified that σ1∗ is bounded

from H1(T) to L1(T). The author [82] extended this result to the Cesàro
summation, i.e. to σα∗ , α > 0 and 1/(α + 1) < p < ∞.
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Stein and Weiss [66] and Butzer and Nessel [5] proved for γ = 1, 2 that the
Riesz means σα,γ

n f of a function f ∈ L1(T) converge a.e. to f as n →∞. The
author [83] verified the same result for all γ ≥ 1 and that the maximal Riesz
operator σα,γ

∗ := supn∈N |σα,γ
n | is of weak type (1, 1). Moreover, we proved

in [83] that σα,γ
∗ is bounded from Hp(T) to Lp(T) provided that 1/(α + 1) <

p < ∞ and 0 < α ≤ 1. In the special case α = γ = 1 the Riesz means are
exactly the Fejér means.

In the next subsections analogous results will be given for Walsh-Fourier
series.

Dyadic Hardy spaces
For a set X 6= ∅ let Xj be its Cartesian product X× . . .×X taken with itself

j-times. We briefly write Lp[0, 1)j instead of the space Lp([0, 1)j , λ) (j ≥ 1)
where λ is the Lebesgue measure.

By a dyadic interval we mean one of the form [k2−n, (k + 1)2−n) for some
k, n ∈ N, 0 ≤ k < 2n. Given n ∈ N and x ∈ [0, 1) let In(x) be the dyadic
interval of length 2−n which contains x. The σ-algebra generated by the dyadic
intervals {In(x) : x ∈ [0, 1)} will be denoted by Fn (n ∈ N).

We investigate the class of martingales f = (fn, n ∈ N) with respect to
(Fn, n ∈ N). The maximal function of a martingale f is defined by

f∗ := sup
n∈N

|fn|.

For 0 < p ≤ ∞ the martingale Hardy space Hp[0, 1) consists of all one-
parameter martingales for which

‖f‖Hp
:= ‖f∗‖p < ∞.

Recall that the Hardy and Lp spaces are equivalent, if p > 1, in other words,

Hp[0, 1) ∼ Lp[0, 1) (1 < p ≤ ∞).

Moreover, the martingale maximal function is of weak type (1, 1):

‖f‖H1,∞ := sup
ρ>0

ρλ(f∗ > ρ) ≤ C‖f‖1 (f ∈ L1[0, 1))

(see Neveu [45] or Weisz [73]) and H1[0, 1) ⊂ L1[0, 1).
Now some boundedness theorems for Hardy spaces are given. To this end

we introduce the definition of the atoms. The atomic decomposition is a useful
characterization of the Hardy spaces by the help of which some boundedness
results, duality theorems, maximal inequalities and interpolation results can
be proved. The atoms are relatively simple and easy to handle functions. If
we have an atomic decomposition, then we have to prove several theorems
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for atoms, only. A first version of the atomic decomposition was introduced by
Coifman and Weiss [11] in the classical case and by Herz [34] in the martingale
case.

A function a ∈ L∞ is called a p-atom if

(a) supp a ⊂ I , I ⊂ [0, 1) is a dyadic interval,

(b) ‖a‖∞ ≤ |I|−1/p,

(c)
∫
I a(x) dx = 0.

The basic result of atomic decomposition is the following one.

Theorem 9.1 A martingale f is in Hp[0, 1) (0 < p ≤ 1}) if and only if
there exist a sequence (ak, k ∈ N) of p-atoms and a sequence (µk, k ∈ N) of
real numbers such that

∞∑

k=0

µka
k = f in the sense of martingales,

∞∑

k=0

|µk|p < ∞.

(9.1)

Moreover,

‖f‖Hp
∼ inf

( ∞∑

k=0

|µk|p
)1/p

(9.2)

where the infimum is taken over all decompositions of f of the form (9.1).

The proof of this theorem can be found e.g. in Latter [37], Lu [39], Coifman
and Weiss [11], Coifman [10], Wilson [94, 95] and Stein [65] in the classical
case and in Weisz [73] for martingale Hardy spaces.

If I is a dyadic interval then let Ir = 2rI be a dyadic interval, for which
I ⊂ Ir and |Ir| = 2r|I| (r ∈ N).

The following result gives a sufficient condition for V to be bounded from
Hp[0, 1) to Lp[0, 1). For p0 = 1 it can be found in Schipp, Wade, Simon and
Pál [56] and in Móricz, Schipp and Wade [44], for p0 < 1 see Weisz [78].

Theorem 9.2 Suppose that
∫

[0,1)\Ir

|V a|p0 dλ ≤ Cp0

for all p0-atoms a and for some fixed r ∈ N and 0 < p0 ≤ 1. If the sublinear
operator V is bounded from Lp1 [0, 1) to Lp1 [0, 1) (1 < p1 ≤ ∞) then

‖V f‖p ≤ Cp‖f‖Hp (f ∈ Hp[0, 1)) (9.3)
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for all p0 ≤ p ≤ p1. Moreover, if p0 < 1 then the operator V is of weak type
(1, 1), i.e. if f ∈ L1[0, 1) then

sup
ρ>0

ρλ(|V f | > ρ) ≤ C‖f‖1. (9.4)

Note that (9.4) can be obtained from (9.3) by interpolation. For the basic
definitions and theorems on interpolation theory see Bergh and Löfström [2]
and Bennett and Sharpley [1] or Weisz [73, 91]. The interpolation of martin-
gale Hardy spaces was worked out in [73]. Theorem 9.2 can be regarded also as
an alternative tool to the Calderon-Zygmund decomposition lemma for prov-
ing weak type (1, 1) inequalities. In many cases this theorem can be applied
better and more simply than the Calderon-Zygmund decomposition lemma.

We formulate also a weak version of this theorem.

Theorem 9.3 Suppose that

sup
ρ>0

ρp λ
(
{|V a| > ρ} ∩ {[0, 1) \ Ir}

)
≤ Cp

for all p-atoms a and for some fixed r ∈ N and 0 < p < 1. If the sublinear
operator V is bounded from Lp1 to Lp1 (1 < p1 ≤ ∞), then

‖V f‖p,∞ ≤ Cp‖f‖Hp (f ∈ Hp[0, 1)).

Walsh functions
The Rademacher functions are defined by

r(x) :=
{

1, if x ∈ [0, 1
2);

−1, if x ∈ [12 , 1),

and
rn(x) := r(2nx) (x ∈ [0, 1), n ∈ N).

The product system generated by the Rademacher functions is the one-dimensional
Walsh system:

wn :=
∞∏

k=0

rk
nk ,

where

n =
∞∑

k=0

nk2k, (0 ≤ nk < 2).

If f ∈ L1[0, 1) then the number

f̂(n) :=
∫

[0,1)
fwn dλ (n ∈ N)
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is said to be the nth Walsh-Fourier coefficient of f . We can extend this defini-
tion to martingales as well in the usual way (see Weisz [74]). Denote by snf
the nth partial sum of the Walsh-Fourier series of a martingale f , namely,

snf :=
n−1∑

k=0

f̂(k)wk.

It is known that s2nf = fn (n ∈ N) and

s2nf → f in Lp-norm and a.e. as n →∞,

if f ∈ Lp[0, 1) (1 ≤ p < ∞).
The Carleson’s theorem was extended to Walsh-Fourier series by Billard [3]

and Sjölin [64]:
snf → f a.e. as n →∞, (9.5)

whenever f ∈ Lp[0, 1) (1 < p < ∞). If

s∗f := sup
n∈N

|snf |

denotes the maximal partial sum operator, then

‖s∗f‖p ≤ Cp‖f‖p (f ∈ Lp[0, 1), 1 < p < ∞). (9.6)

This implies besides the a.e. convergence (9.5) also the Lp-norm convergence
of snf to f (1 < p < ∞). These theorems do not hold, if p = 1, however they
can be generalized for p = 1 with the help of some summability methods. Fine
[16] proved that the Cesàro or (C, α) means σα

nf (α > 0) of a function f ∈
L1[0, 1) converge a.e. to f as n →∞. The convergence at all Walsh-Lebesgue
points was verified by the author [72]. It is known that the maximal operator
of the Fejér means (α = 1) is of weak type (1, 1), (see Schipp [52]). Fujii [19]
proved that σ1∗ is bounded from H1[0, 1) to L1[0, 1) (see also Schipp, Simon
[54]). For Vilenkin-Fourier series these results are due to Simon [58]. For the
Riesz means of Walsh-Fourier series it was known only that the one-dimensio-
nal maximal Riesz operator is bounded from Lp[0, 1) to Lp[0, 1) (1 < p < ∞)
(see Paley [49]).

Summability of one-dimensional Walsh-Fourier series
The Fejér, Cesàro (or (C,α)) and Riesz means of a martingale f are given

by

σnf :=
1
n

n∑

k=1

skf =
n−1∑

k=0

(
1− k

n

)
f̂(k)wk,
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σα
nf :=

1
Aα

n−1

n∑

k=1

Aα−1
n−kskf =

1
Aα

n−1

n−1∑

k=0

Aα
n−k−1f̂(k)wk

and

σα,γ
n f :=

1
nαγ

n−1∑

k=0

(
(nγ − kγ)α

)
f̂(k)wk,

respectively, where

Aα
k :=

(
k + α

k

)
=

(α + 1)(α + 2) . . . (α + k)
k!

.

If α = 1 then σα
nf = σnf , and so the (C, 1) means are the Fejér means. Since

Aα
k ∼ kα (k ∈ N), we have Aα

n−k−1 ∼ (n − k)α. Thus the means σα
nf are

“similar” to the ones σα,1
n f .

The maximal operator of the Cesàro and Riesz means are defined by

σα
∗ f := sup

n∈N
|σα

nf |, σα,γ
∗ f := sup

n∈N
|σα,γ

n f |.

In what follows we use a common notation σn for the Cesàro and Riesz means
and σ∗ for the corresponding maximal operators.

The next result generalizes (9.6) for the maximal operator of the summabil-
ity means (see Zygmund [98] and Paley [49]).

Theorem 9.4 If 0 < α ≤ 1 ≤ γ and 1 < p ≤ ∞ then

‖σ∗f‖p ≤ Cp‖f‖p (f ∈ Lp[0, 1)).

Moreover, for all f ∈ Lp[0, 1) (1 < p < ∞),

σnf → f a.e. and in Lp-norm as n →∞.

The Lp-norm convergence holds also, if p = 1. Applying Theorems 9.2 and
9.3, we extended the previous result to p < 1 in [74, 89, 91, 63] (for α = p = 1
see Fujii [19]):

Theorem 9.5 If 0 < α ≤ 1 ≤ γ and 1/(α + 1) < p ≤ ∞ then

‖σ∗f‖p ≤ Cp‖f‖Hp (f ∈ Hp[0, 1))

and for f ∈ H1/(α+1)[0, 1),

‖σ∗f‖1/(α+1),∞ = sup
ρ>0

ρλ(σ∗f > ρ)α+1 ≤ C‖f‖H1/(α+1)
.
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The critical index is p = 1/(α + 1), if p is smaller than or equal to this
critical index, then σ∗ is not bounded anymore (see Simon and Weisz [63] and
Simon [59]):

Theorem 9.6 The operator σ∗ (0 < α ≤ 1 ≤ γ) is not bounded from
Hp[0, 1) to Lp[0, 1) if 0 < p ≤ 1/(α + 1).

We get the next weak type (1, 1) inequality from Theorem 9.5 by interpola-
tion (Weisz [74, 89, 91], for α = 1 Schipp [52]).

Corollary 9.1 If 0 < α ≤ 1 ≤ γ and f ∈ L1[0, 1) then

sup
ρ>0

ρλ(σ∗f > ρ) ≤ C‖f‖1.

Since the set of the Walsh polynomials is dense in L1[0, 1), Corollary 9.1
and the usual density argument (see Marcinkievicz, Zygmund [41]) imply

Corollary 9.2 If 0 < α ≤ 1 ≤ γ and f ∈ L1[0, 1) then

σnf → f a.e. as n →∞.

Recall that this convergence result was proved by Fine [16] for the (C, α)
summation and in this general version by the author [74, 89]. With the help of
the conjugate functions we proved also

Theorem 9.7 If 0 < α ≤ 1 ≤ γ and 1/(α + 1) < p ≤ ∞ then

‖σnf‖Hp ≤ Cp‖f‖Hp (f ∈ Hp[0, 1)).

Corollary 9.3 If 0 < α ≤ 1 ≤ γ, 1/(α + 1) < p < ∞ and f ∈ Hp[0, 1)
then

σnf → f in Hp-norm as n →∞.

Some of these theorems can be found in Gát [21] and Simon [60, 59] for
the Walsh-Kaczmarz system, in Simon [58] and Weisz [80] for the Vilenkin
systems.

Note that for α > 1 the results can be reduced to the α = 1 case.

3. The Dyadic Derivative
The one-dimensional differentiation theorem due to Lebesgue

f(x) = lim
h→0

1
h

∫ x+h

x
f(t) dt a.e. (f ∈ L1[0, 1))

is well known (see e.g. Zygmund [98]).
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In this section the dyadic analogue of this result will be formulated. Gibbs
[26], Butzer and Wagner [6, 7] introduced the concept of the dyadic derivative
as follows. For each function f defined on [0, 1) set

(dnf)(x) :=
n−1∑

j=0

2j−1(f(x)− f(x+̇2−j−1)), (x ∈ [0, 1)).

Then f is said to be dyadically differentiable at x ∈ [0, 1) if (dnf)(x) con-
verges as n → ∞. It was verified by Butzer and Wagner [7] that every Walsh
function is dyadically differentiable and

lim
n→∞(dnwk)(x) = kwk(x) (x ∈ [0, 1), k ∈ N).

Let W be the function whose Walsh-Fourier coefficients satisfy

Ŵ (k) :=
{

1, if k = 0
1/k, if k ∈ N, k 6= 0.

The dyadic integral of f ∈ L1[0, 1) is introduced by

If(x) := f ∗W (x) :=
∫ 1

0
f(t)W (x+̇t) dt.

Notice that W ∈ L2[0, 1) ⊂ L1[0, 1), so I is well defined on L1[0, 1).
Let the maximal operator be defined by

I∗f := sup
n∈N

|dn(If)|.

The boundedness of I∗ from Lp[0, 1) to Lp[0, 1) (1 < p ≤ ∞) is due to Schipp
[51]:

Theorem 9.8 If 1 < p < ∞ then

‖I∗f‖p ≤ Cp‖f‖p (f ∈ Lp[0, 1)).

Schipp and Simon [54] verified that I∗ is bounded from L log L[0, 1) to
L1[0, 1). Recall that L log L[0, 1) ⊂ H1[0, 1). These results are extended to
Hp[0, 1) spaces in the next theorem (see Weisz [81]).

Theorem 9.9 Suppose that f ∈ Hp[0, 1) ∩ L1[0, 1) and
∫ 1

0
f(x) dx = 0. (9.7)

Then
‖I∗f‖p ≤ Cp‖f‖Hp
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for all 1/2 < p < ∞.

We get by interpolation

Corollary 9.4 If f ∈ L1[0, 1) satisfies (9.7), then

sup
ρ>0

ρ λ(I∗f > ρ) ≤ C‖f‖1.

The dyadic analogue of the Lebesgue’s differentiation theorem follows eas-
ily from the preceding weak type inequality:

Corollary 9.5 If f ∈ L1[0, 1) satisfies (9.7), then

dn(If) → f a.e., as n →∞.

Corollaries 9.4 and 9.5 are due to Schipp [51] (see also Weisz [76]).

4. More-dimensional Walsh-Fourier Series
The analogue of the Carleson’s theorem does not hold in higher dimen-

sions. However, the summability results above can be generalized for the
more-dimensional case. For multi-dimensional trigonometric Fourier series
Zygmund [98] verified that if f ∈ L(log L)d−1(Td) then the Cesàro means
σα

nf converges to f a.e. and if f ∈ Lp[0, 1)d (1 ≤ p < ∞) then σα
nf → f

in Lp[0, 1)d norm as min(n1, . . . , nd) → ∞. Moreover, if n must be in a
cone then the a.e. convergence holds for all f ∈ L1(Td). More exactly,
Marcinkievicz and Zygmund [41] proved that the Fejér means σ1

nf of a func-
tion f ∈ L1(Td) converge a.e. to f as min(n1, . . . , nd) → ∞ provided
that n is in a positive cone, i.e., provided that 2−τ ≤ ni/nj ≤ 2τ for every
i, j = 1, . . . , d and for some τ ≥ 0 (n = (n1, . . . , nd) ∈ Nd).

In the next subsections Walsh- and multi-dimensional analogues of the re-
sults above will be given.

d-dimensional dyadic Hardy spaces
By a dyadic rectangle we mean a Cartesian product of d dyadic intervals.

For n ∈ Nd and x ∈ [0, 1)d let In(x) := In1(x1) × . . . × Ind
(xd), where

n = (n1, . . . , nd) and x = (x1, . . . , xd). The σ-algebra generated by the
dyadic rectangles {In(x) : x ∈ [0, 1)d}will be denoted again byFn (n ∈ Nd).

For d-parameter martingales f = (fn, n ∈ Nd) with respect to (Fn, n ∈
Nd) we introduce three kinds of maximal functions and Hardy spaces. The
maximal functions are defined by

f◦ := sup
n∈N

|fn|, f∗ := sup
n∈Nd

|fn|,



More-dimensional Walsh-Fourier Series 119

where n := (n, . . . , n) ∈ Nd for n ∈ N. In the first maximal function we
have taken the supremum over the diagonal, in the second one over Nd. Let
En denote the conditional expectation operator with respect to Fn. Obviously,
if f ∈ L1[0, 1)d then (Enf, n ∈ Nd) is a martingale. In the third maximal
function the supremum is taken over d− 1 indices: for fixed xi we define

f i(x) := sup
nk∈N,k=1,...,d;k 6=i

|En1 . . . Eni−1Eni+1 . . . End
f(x)|.

For 0 < p ≤ ∞ the martingale Hardy spaces H◦
p [0, 1)d, Hp[0, 1)d and

H i
p[0, 1)d consists of all d-parameter martingales for which

‖f‖H◦
p

:= ‖f◦‖p < ∞, ‖f‖Hp
:= ‖f∗‖p < ∞, ‖f‖Hi

p
:= ‖f i‖p < ∞,

respectively. One can show (see Weisz [73]) that L(log L)d−1[0, 1)d ⊂ H i
1[0, 1)d ⊂

H1,∞[0, 1)d (i = 1, . . . , d), more exactly,

‖f‖H1,∞ := sup
ρ>0

ρλ(f∗ > ρ) ≤ C‖f‖Hi
1

(f ∈ H i
1[0, 1)d)

and

‖f‖Hi
1
≤ C + C‖|f |(log+ |f |)d−1‖1 (f ∈ L(log L)d−1[0, 1)d)

where log+ u = 1{u>1} log u. Moreover, it is known that

H◦
p [0, 1)d ∼ Hp[0, 1)d ∼ H i

p[0, 1)d ∼ Lp[0, 1)d (1 < p < ∞).

The hardy spaces H◦
p [0, 1)d. To obtain some convergence results of the

summability means over the diagonal we consider the Hardy space H◦
p [0, 1)d.

Now the situation is similar to the one-dimensional case.
A function a ∈ L∞[0, 1)d is a cube p-atom if

(a) supp a ⊂ I , I ⊂ [0, 1)d is a dyadic cube,

(b) ‖a‖∞ ≤ |I|−1/p,

(c)
∫
I a(x) dx = 0.

The basic result of atomic decomposition is the following one (see Weisz
[73, 91]).

Theorem 9.10 A d-parameter martingale f is in H◦
p [0, 1)d (0 < p ≤ 1) if

and only if there exist a sequence (ak, k ∈ N) of cube p-atoms and a sequence
(µk, k ∈ N) of real numbers such that
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∞∑

k=0

µka
k = f in the sense of martingales,

∞∑

k=0

|µk|p < ∞.

(9.8)

Moreover,

‖f‖H◦
p [0,1)d ∼ inf

( ∞∑

k=0

|µk|p
)1/p

(9.9)

where the infimum is taken over all decompositions of f of the form (9.8).

For a rectangle R = I1 × . . . × Id ⊂ Rd let Rr := 2rR := Ir
1 × . . . × Ir

d
(r ∈ N). The following result generalizes Theorem 9.2.

Theorem 9.11 Suppose that
∫

[0,1)d\Ir

|V a|p0 dλ ≤ Cp0

for all cube p0-atoms a and for some fixed r ∈ N and 0 < p0 ≤ 1. If the
sublinear operator V is bounded from Lp1 [0, 1)d to Lp1 [0, 1)d (1 < p1 ≤ ∞)
then

‖V f‖p ≤ Cp‖f‖H◦
p

(f ∈ H◦
p [0, 1)d) (9.10)

for all p0 ≤ p ≤ p1. Moreover, if p0 < 1 then the operator V is of weak type
(1, 1), i.e. if f ∈ L1[0, 1)d then

sup
ρ>0

ρλ(|V f | > ρ) ≤ C‖f‖1. (9.11)

Again, (9.11) follows from (9.10) by interpolation.

The Hardy spaces Hp[0, 1)d. In the investigation of the convergence in
the Prighheim’s sense (i.e. over all n) we use the Hardy spaces Hp[0, 1)d. The
atomic decomposition for Hp[0, 1)d is much more complicated. One reason of
this is that the support of an atom is not a rectangle but an open set. Moreover,
here we have to choose the atoms from L2[0, 1)d instead of L∞[0, 1)d. This
atomic decomposition was proved by Chang and Fefferman [9, 14] and Weisz
[85, 91]. For an open set F ⊂ [0, 1)d denote by M(F ) the maximal dyadic
subrectangles of F .

A function a ∈ L2 is a p-atom if

(a) supp a ⊂ F for some open set F ⊂ [0, 1)d,
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(b) ‖a‖2 ≤ |F |1/2−1/p,
(c) a can be further decomposed into the sum of “elementary particles”

aR ∈ L2, a =
∑

R∈M(F ) aR in L2, satisfying
(d) supp aR ⊂ R ⊂ F ,
(e) for all i = 1, . . . , d and R ∈M(F ) we have

∫

[0,1)
aR(x) dxi = 0,

(f) for every disjoint partition Pl (l = 1, 2, . . .) of M(F ),
(∑

l

‖
∑

R∈Pl

aR‖2
2

)1/2
≤ |F |1/2−1/p.

Theorem 9.12 A d-parameter martingale f is in Hp[0, 1)d (0 < p ≤ 1)
if and only if there exist a sequence (ak, k ∈ N) of p-atoms and a sequence
(µk, k ∈ N) of real numbers such that

∞∑

k=0

µka
k = f in the sense of martingales,

∞∑

k=0

|µk|p < ∞.

(9.12)

Moreover,

‖f‖Hp
∼ inf

( ∞∑

k=0

|µk|p
)1/p

where the infimum is taken over all decompositions of f of the form (9.12).

The corresponding results to Theorems 9.2 and 9.11 for the Hp[0, 1)d space
are much more complicated. First we consider the two-dimensional case.
Since the definition of the p-atom is very complex, to obtain a usable con-
dition about the boundedness of the operators, we have to introduce simpler
atoms.

If d = 2, a function a ∈ L2[0, 1)2 is called a simple p-atom, if

(a) supp a ⊂ R, R ⊂ [0, 1)2 is a dyadic rectangle,
(b) ‖a‖2 ≤ |R|1/2−1/p,
(c)

∫
[0,1) a(x) dxi = 0 for i = 1, 2.

Note that Hp[0, 1)d cannot be decomposed into rectangle p-atoms, a coun-
terexample can be found in Weisz [73]. However, the following result says that
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for an operator V to be bounded from Hp[0, 1)d to Lp[0, 1)d (0 < p ≤ 1) it is
enough to check V on simple p-atoms and the boundedness of V on L2[0, 1)d.

Theorem 9.13 Suppose that d = 2, 0 < p0 ≤ 1 and there exists η > 0 such
that ∫

[0,1)2\Rr

|V a|p0 dλ ≤ Cp02
−ηr, (9.13)

for all simple p0-atoms a and for all r ≥ 1. If the sublinear operator V is
bounded from L2[0, 1)d to L2[0, 1)d, then

‖V f‖p ≤ Cp‖f‖Hp (f ∈ Hp[0, 1)d) (9.14)

for all p0 ≤ p ≤ 2. In particular, if p0 < 1 then the operator V is of weak type
(H i

1[0, 1)d, L1[0, 1)d), i.e. if f ∈ H i
1[0, 1)d for some i = 1, . . . , d then

sup
ρ>0

ρλ(|V f | > ρ) ≤ C‖f‖Hi
1
. (9.15)

Inequality (9.15) follows from (9.14) by interpolation. In some sense the
space H i

1[0, 1)d plays the role of the one-dimensional L1[0, 1) space.
Theorem 9.13 for two-dimensional classical Hardy spaces is due to Feffer-

man [14] and for martingale Hardy spaces to Weisz [79]. Journé [36] verified
that the preceding result do not hold for dimensions greater than 2. So there are
fundamental differences between the theory in the two-parameter and three- or
more-parameter cases. Now we present the analogous theorem for higher di-
mensions.

Let d ≥ 3. A function a ∈ L2[0, 1)d is called a simple p-atom, if there exist
dyadic intervals Ii ⊂ [0, 1), i = 1, . . . , j for some 1 ≤ j ≤ d− 1 such that

(a) supp a ⊂ I1 × . . . Ij ×A for some measurable set A ⊂ [0, 1)d−j ,

(b) ‖a‖2 ≤ (|I1| · · · |Ij ||A|)1/2−1/p,
(c)

∫
Ii

a(x)xi dxi =
∫
A a dλ = 0 for i = 1, . . . , j.

Of course if a ∈ L2[0, 1)d satisfies these conditions for another subset of
{1, . . . , d} than {1, . . . , j}, then it is also called simple p-atom.

As in the two-parameter case, Hp[0, 1)d cannot be decomposed into sim-
ple p-atoms. It is easy to see that condition (9.13) can also be formulated as
follows:

∫

(Ir
1 )c×I2

|V a|p0 dλ +
∫

(Ir
1 )c×Ic

2

|V a|p0 dλ ≤ Cp02
−ηr

and the corresponding inequality holds for the dilation of I2, where Hc denotes
the complement of the set H and R = I1 × I2. For higher dimensions we
generalize this form. The next theorem is due to the author [85, 91].



More-dimensional Walsh-Fourier Series 123

Theorem 9.14 Let d ≥ 3. Suppose that the operators Vn are linear for
every n ∈ Nd and

V := sup
n∈Nd

|Vn|

is bounded on L2[0, 1)d. Suppose that there exist η1, . . . , ηd > 0, such that for
all simple p0-atoms a and for all r1 . . . , rd ≥ 1

∫

(I
r1
1 )c×...×(I

rj
j )c

∫

A
|V a|p0 dλ ≤ Cp02

−η1r1 · · · 2−ηjrj .

If j = d − 1 and A = Id ⊂ [0, 1) is a dyadic interval, then we assume also
that

∫

(I
r1
1 )c×...×(I

rd−1
d−1 )c

∫

(Id)c

|V a|p0 dλ ≤ Cp02
−η1r1 · · · 2−ηd−1rd−1 .

Then
‖V ∗f‖p ≤ Cp‖f‖Hp (f ∈ Hp[0, 1)d)

for all p0 ≤ p ≤ 2. In particular, if p0 < 1 and f ∈ H i
1[0, 1)d for some

i = 1, . . . , d then
sup
ρ>0

ρλ(|V f | > ρ) ≤ C‖f‖Hi
1
. (9.16)

More-dimensional Walsh Functions
The Kronecker product (wn, n ∈ Nd) of d Walsh systems is said to be the

d-dimensional Walsh system. Thus

wn(x) := wn1(x1) · · ·wnd
(xd)

where n = (n1, . . . , nd) ∈ Nd, x = (x1, . . . , xd) ∈ [0, 1)d.
The nth Fourier coefficient of f ∈ L1[0, 1)d is introduced by

f̂(n) :=
∫

[0,1)d

fwn dλ (n ∈ Nd).

With the usual extension of Fourier coefficients to martingales we can define
the nth partial sum of the Walsh-Fourier series of a martingale f by

snf :=
d∑

j=1

nj−1∑

kj=0

f̂(k)wk, (n ∈ Nd).

Under
∑d

j=1

∑nj−1
kj=0 we mean the sum

∑n1−1
k1=0 . . .

∑nd−1
kd=0 .
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It is known that s2n1 ,...,2nd f = fn (n ∈ Nd) and

s2n1 ,...,2nd f → f in Lp-norm as n →∞,

if f ∈ Lp[0, 1)d (1 ≤ p < ∞). If p > 1 then the convergence holds also a.e.
Moreover,

snf → f in Lp-norm as n →∞,

whenever f ∈ Lp[0, 1)d (1 < p < ∞) (see e.g. Schipp, Wade, Simon and Pál
[56]). The a.e. convergence of snf is not true (Fefferman [12, 13]). However,
investigating the partial sums over the diagonal, only, we have the following
results (Móricz [42] or Schipp, Wade, Simon and Pál [56]):

‖ sup
n∈N

|snf |‖2 ≤ C‖f‖2 (f ∈ L2[0, 1)d)

and for f ∈ L2[0, 1)d

snf → f a.e. as n →∞ (n ∈ N). (9.17)

In contrary to the trigonometric case, it is unknown whether this result holds
for functions in Lp[0, 1)d, 1 < p < 2.

Summability of d-dimensional Walsh-Fourier series
The Fejér, Cesàro and Riesz means of a martingale f are defined by

σnf :=
1∏d

i=1 ni

d∑

j=1

nj∑

kj=1

skf =
d∑

j=1

nj−1∑

kj=0

d∏

i=1

(
1− ki

ni

)
f̂(k)wk,

σα
nf :=

1∏d
i=1 Aαi

ni−1

d∑

j=1

nj∑

kj=1

A
αj−1
nj−kj

skf

=
1∏d

i=1 Aαi
ni−1

d∑

j=1

nj−1∑

kj=0

( d∏

i=1

Aαi
ni−ki−1

)
f̂(k)wk

and

σα,γ
n f :=

1∏d
i=1 ni

αiγi

d∑

j=1

nj−1∑

kj=0

( d∏

i=1

(nγi
i − kγi

i )αi

)
f̂(k)wk,

respectively. We use again the common notation σn for the Cesàro and Riesz
means. For a given τ ≥ 0 the restricted and non-restricted maximal operators
are defined by

σ◦f := sup
2−τ≤ni/nj≤2τ

i,j=1,...,d

|σnf |, σ∗f := sup
n∈Nd

|σnf |.
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The next result follows easily from Theorem 9.4 by iteration.

Theorem 9.15 If 0 < αj ≤ 1 ≤ γj (j = 1, . . . , d) and 1 < p ≤ ∞ then

‖σ∗f‖p ≤ Cp‖f‖p (f ∈ Lp[0, 1)d).

Moreover, for all f ∈ Lp[0, 1)d (1 < p < ∞),

σnf → f a.e. and in Lp-norm as n →∞.

The Lp-norm convergence holds also, if p = 1. Here n → ∞ means that
min(n1, . . . , nd) →∞ (the Pringsheim’s sense of convergence).

Restricted summability. In this subsection we investigate the operator
σ◦ and the convergence of σnf over the cone {n ∈ Nd : 2−τ ≤ ni/nj ≤
2τ ; i, j = 1, . . . , d}, where τ ≥ 0 is fixed.

Theorem 9.16 If 0 < αj ≤ 1 ≤ γj (j = 1, . . . , d) and

p0 := max{1/(αj + 1), j = 1, . . . , d} < p < ∞,

then
‖σ◦f‖p ≤ Cp‖f‖H◦

p
(f ∈ H◦

p [0, 1)d).

This theorem for α1 = α2 = 1 and for two-dimensional functions was
proved by the author [75]. The general version of Theorem 9.16 can be found
in Weisz [84, 91] (see also Goginava [27]).

For the Fejér means (i.e. αj = γj = 1, j = 1, . . . , d) there are counterex-
amples for the boundedness of σ◦ if p ≤ p0 = 1/2 (Goginava [33]).

Theorem 9.17 The operator σ1◦ (αj = 1, j = 1, . . . , d) is not bounded from
H◦

p [0, 1)d to Lp[0, 1)d if 0 < p ≤ 1/2.

By interpolation we obtain ([84])

Corollary 9.6 If 0 < αj ≤ 1 ≤ γj (j = 1, . . . , d) and f ∈ L1[0, 1)d then

sup
ρ>0

ρλ(σ◦f > ρ) ≤ C‖f‖1.

The set of the Walsh polynomials is dense in L1[0, 1)d, so Corollary 9.6
imply the Walsh analogue of the Marcinkiewicz-Zygmund result.

Corollary 9.7 If 0 < αj ≤ 1 ≤ γj (j = 1, . . . , d) and f ∈ L1[0, 1)d then

σnf → f a.e.
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as n →∞ and 2−τ ≤ ni/nj ≤ 2τ (i, j = 1, . . . , d).

Note that this corollary is due to the author [75, 84], for Fejér means and for
two-dimensional functions it can also be found in Gát [20].

The following results are known ([84]) for the norm convergence of σnf .

Theorem 9.18 If 0 < αj ≤ 1 ≤ γj (j = 1, . . . , d) and p0 < p < ∞, then

‖σnf‖H◦
p
≤ Cp‖f‖H◦

p
(f ∈ H◦

p [0, 1)d)

whenever 2−τ ≤ ni/nj ≤ 2τ (i, j = 1, . . . , d).

Corollary 9.8 If 0 < αj ≤ 1 ≤ γj (j = 1, . . . , d), p0 < p < ∞ and
f ∈ H◦

p then
σnf → f in H◦

p -norm

as n →∞ and 2−τ ≤ ni/nj ≤ 2τ (i, j = 1, . . . , d).

Unrestricted summability. Now we deal with the operator σ∗ and the
convergence of σnf as n →∞, i.e. min(n1, . . . , nd) →∞. The next result is
due to the author ([79, 87, 85, 92]).

Theorem 9.19 If 0 < αj ≤ 1 ≤ γj (j = 1, . . . , d) and

p0 := max{1/(αj + 1), j = 1, . . . , d} < p < ∞,

then
‖σ∗f‖p ≤ Cp‖f‖Hp (f ∈ Hp[0, 1)d).

Theorem 9.20 (Goginava [33]) The operator σ1∗ (αj = 1, j = 1, . . . , d)
is not bounded from Hp[0, 1)d to Lp[0, 1)d if 0 < p ≤ 1/2.

By interpolation we get here a.e. convergence for functions from the spaces
H i

1[0, 1)d instead of L1[0, 1)d.

Corollary 9.9 If 0 < αj ≤ 1 ≤ γj and f ∈ H i
1[0, 1)d (i, j = 1, . . . , d)

then
sup
ρ>0

ρλ(σ∗f > ρ) ≤ C‖f‖Hi
1
.

Recall that H i
1[0, 1)d ⊃ L(log L)d−1[0, 1)d for all i = 1, . . . , d.

Corollary 9.10 If 0 < αj ≤ 1 ≤ γj and f ∈ H i
1[0, 1)d (i, j = 1, . . . , d)

then
σnf → f a.e. as n →∞.
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Gát [23, 24] proved for the Fejér means that this corollary does not hold for
all integrable functions.

Theorem 9.21 The a.e. convergence is not true for all f ∈ L1[0, 1)d.

Theorem 9.22 If 0 < αj ≤ 1 ≤ γj (j = 1, . . . , d) and p0 < p < ∞, then

‖σnf‖Hp ≤ Cp‖f‖Hp (f ∈ Hp[0, 1)d, n ∈ Nd).

Corollary 9.11 If 0 < αj ≤ 1 ≤ γj (j = 1, . . . , d), p0 < p < ∞ and
f ∈ Hp then

σnf → f in Hp-norm as n →∞.

5. More-dimensional Dyadic Derivative
The multi-dimensional version of Lebesgue’s differentiation theorem reads

as follows:

f(x) = lim
h→0

1∏d
j=1 hj

∫ x1+h1

x1

. . .

∫ xd+hd

xd

f(t) dt a.e.,

if f ∈ L(log L)d−1[0, 1)d. If τ−1 ≤ |hi/hj | ≤ τ for some fixed τ ≥ 0 and
all i, j = 1, . . . , d, then it holds for all f ∈ L1[0, 1)d. To present the dyadic
version of this result we introduce first the multi-dimensional dyadic derivative
([4]) by the limit of

(dnf)(x) :=
d∑

i=1

ni−1∑

ji=0

2j1+...+jd−d

×
1∑

εi=0

(−1)ε1+...+εdf(x1+̇ε12−j1−1, . . . , xd+̇εd2−jd−1).

The d-dimensional dyadic integral is defined by

If(x) := f∗(W×. . .×W )(x) =
∫ 1

0
. . .

∫ 1

0
f(t)W (x1+̇t1) · · ·W (xd+̇td) dt

and for given τ ≥ 0 let the maximal operators be

I◦f := sup
|ni−nj |≤τ,i,j=1,...,d

|dn(If)|, I∗f := sup
n∈Nd

|dn(If)|.

Theorem 9.23 Suppose that f ∈ H◦
p [0, 1)d ∩ L1[0, 1)d and

∫ 1

0
f(x) dxi = 0 (i = 1, . . . , d). (9.18)
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Then
‖I◦f‖p ≤ Cp‖f‖H◦

p

for all d/(d + 1) < p < ∞.

Corollary 9.12 If f ∈ L1[0, 1)d satisfies (9.18), then

sup
ρ>0

ρ λ(I◦f > ρ) ≤ C‖f‖1.

Corollary 9.13 If τ ≥ 0 is arbitrary and f ∈ L1[0, 1)d satisfies (9.18),
then

dn(If) → f a.e., as n →∞ and |ni − nj | ≤ τ.

Theorem 9.23 and Corollaries 9.12 and 9.13 are due to the author [76, 91].
The two corollaries were also shown by Gát [22].

For the operator I∗ the following results were verified in Weisz [77, 88, 91].

Theorem 9.24 If (9.18) is satisfied and 1/2 < p < ∞ then

‖I∗f‖p ≤ Cp‖f‖Hp (f ∈ Hp[0, 1)d).

Corollary 9.14 If f ∈ H i
1[0, 1)d (i = 1, . . . , d) satisfies (9.18), then

sup
ρ>0

ρ λ(I∗f > ρ) ≤ C‖f‖Hi
1
.

Corollary 9.15 If f ∈ H i
1[0, 1)d(⊃ L(log L)d−1[0, 1)d) (i = 1, . . . , d)

satisfies (9.18), then

dn(If) → f a.e., as n →∞.

Note that this result for f ∈ L log L is due to Schipp and Wade [55] in the
two-dimensional case.

Similarly to the dyadic derivative we can define the Vilenkin derivative (see
Onneweer [46]) and one can prove similar results (see Pál and Simon [47, 48],
Gát and Nagy [25] and Simon and Weisz [62, 61].

6. Marcinkiewicz-Cesàro summability of Walsh-Fourier
Series

As we have seen in (9.17), the diagonal partial sums snf converge to f
a.e. as n → ∞. In this section we take the arithmetic means τnf (the so
called Marcinkiewicz-Fejér means) of the sequence (snf) and present some
a.e. results for τnf and inequalities.

Marcinkievicz [40] verified that the Marcinkiewicz-Fejér (or -Cesàro) means
τnf of the two-dimensional trigonometric Fourier series of a function f ∈
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L log L(T2) converge a.e. to f as n → ∞. Later Zhizhiashvili [96, 97] ex-
tended this result to all f ∈ L1(T2). Besides this convergence the author
[86] proved that the maximal operator τ∗f := supn∈N |τnf | is bounded from
H◦

p [0, 1)d to Lp[0, 1)d and it is of weak type (1, 1), where p0 < p < ∞ and
p0 < 1.

Let

τnf := τα
n f :=

1
Aα

n−1

n∑

k=1

Aα−1
n−kskf

be the Marcinkiewicz-Cesàro means and

τ∗f := sup
n∈N

|τnf |.

The following results were proved by Weisz [90, 91] and Goginava [28, 29, 30,
32].

Theorem 9.25 If 0 < α ≤ 1 and d/(d + α) < p < ∞ then

‖τ∗f‖p ≤ Cp‖f‖H◦
p

(f ∈ H◦
p [0, 1)d).

Theorem 9.26 (Goginava [31]) The operator τ1∗ is not bounded from
H◦

p [0, 1)d to Lp[0, 1)d if 0 < p ≤ d/(d + 1).

Corollary 9.16 If 0 < α ≤ 1 and f ∈ L1[0, 1)d then

sup
ρ>0

ρλ(τ∗f > ρ) ≤ C‖f‖1.

Corollary 9.17 If 0 < α ≤ 1 and f ∈ L1[0, 1)d then

τnf → f a.e. as n →∞.
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